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a b s t r a c t

In this report we recall the famous Huygens’ experiment which gave the first evidence
of the synchronization phenomenon. We consider the synchronization of two clocks
which are accurate (show the same time) but have pendula with different masses. It has
been shown that such clocks hanging on the same beam can show the almost complete
(in-phase) and almost antiphase synchronizations. By almost complete and almost
antiphase synchronization we defined the periodic motion of the pendula in which the
phase shift between the displacements of the pendula is respectively close (but not equal)
to 0 or π . We give evidence that almost antiphase synchronization was the phenomenon
observed by Huygens in XVII century. We support our numerical studies by considering
the energy balance in the system and showing how the energy is transferred between
the pendula via oscillating beam allowing the pendula’s synchronization. Additionally we
discuss the synchronization of a number of different pendulum clocks hanging from a
horizontal beam which can roll on the parallel surface. It has been shown that after a
transient, different types of synchronization between pendula can be observed; (i) the
complete synchronization in which all pendula behave identically, (ii) pendula create
three or five clusters of synchronized pendula. We derive the equations for the estimation
of the phase differences between phase synchronized clusters. The evidence, why other
configurations with a different number of clusters are not observed, is given.
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1. Introduction

A pendulum clock is a clock that uses a pendulum, a swinging weight as its timekeeping element. The advantage of a
pendulum for timekeeping is ‘that it is a resonant device; it swings back and forth in a precise time interval dependent on its
length and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens (1629–95) until the 1930s, the
pendulum clock was the world’s most precise timekeeper, accounting for its widespread use [1–3]. Pendulum clocks must
be stationary to operate; any motion or accelerations will affect the motion of the pendulum, causing inaccuracies.

In the 60s of XVII century the longitude problem, i.e., finding a robust, accuratemethod of the longitude determination for
marine navigation was the outstanding challenge. Huygens believed that pendulum clocks, suitably modified to withstand
the rigors of the sea, could be sufficiently accurate to reliably determine the longitude1 [4]. In a letter to the Royal Society of
London of 27 February 1665 Huygens described his famous experiment which showed the tendency of two pendula (of the
clocks) to synchronize, or anti-synchronize when mounted together on the same beam [5]. Originally, he used the phrase
‘‘an odd kind of sympathy’’ to describe the observed behavior in two maritime clocks. The original drawing showing this
experiment is shown in Fig. 1. Two pendula, mounted together, will always end up swinging in exactly opposite directions,
regardless of their respective individual motion. This was one of the first observations of the phenomenon of the coupled
harmonic oscillators, which have many applications in physics [6–14], biology and chemistry [12,15–19]. In engineering
very spectacular was synchronization of pedestrians on Millennium bridge [20,9,21–26]. Huygens originally believed the
synchronization occurs due to air currents shared between two pendula, but later after performing several simple tests he
dismissed this and attributed the sympathetic motion of pendula to imperceptible movement in the beam fromwhich both
pendula were suspended.

Huygens’ study of two clocks operating simultaneously arose from the very practical requirement of the redundancy: if
one clock stopped, had to be cleaned or winded up, then the other one provided the proper timekeeping [27,28]. Ultimately,
the innovation of the pendulum did not solve the longitude problem, since slight and almost insensible motion was able to
cause an alteration in their work [29–32].

Recently, this idea has been validated by a few groups of researchers who tested Huygens’ idea [33–46]. These studies
do not give the definite answer to the question: what Huygens was able to observe.

To explain Huygens’ observations Bennett et al. [33] built an experimental device consisting of two interacting pendulum
clocks hung on a heavy support which was mounted on a low-friction wheeled cart. The device moves by the action of the
reaction forces generated by the swing of two pendula and the interaction of the clocks occurs due to the motion of the
clocks’ base. It has been shown that to repeat Huygens’ results high precision (the precision that Huygens certainly could
not achieve) is necessary.

Kanunnikov & Lamper [35] showed that the precise antiphase motion of different pendula noted by Huygens cannot
occur. Different pendula (possibly with different masses) were definitely used by Huygens as can be seen in his drawing
shown in Fig. 2.

Pogromsky et al. [34] designed a controller for synchronization problem of two pendula suspended on an elastically
supported rigid beam. A controller solves the synchronization problem in such a way that the pendula reach the desired

1 The discrepancy in the clock rate equal to one oscillation of the second pendulum (pendulum with a period of oscillations equal to 1 (s) in a day
corresponds to the error in the longitude determination, approximately equal to 500 m in a day (at the equator).
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Nomenclature

α (rad/s) angular frequency of the beam–pendula system oscillations;
αi0 (rad/s) angular frequency of i-th pendulum oscillations when the beam is at rest;
βi (rad), (deg) phase shift between pendula;
βi0 (rad), (deg) initial value of βi;
βII = β2, βIII = 360° − β3, βIV = β4, βV = 360° − β5 (deg) phase shift between pendula;
βI0, βII0, βIII0, βIV0, βV0 (deg) initial values of phase shifts;
δi, σ perturbation added to the variables ϕi and x;
γN (rad), (deg) working angle of the escapement mechanism;
Φi,Φ (rad) amplitudes of oscillations of the pendulum;
ϕi, ϕ̇i, ϕ̈i displacement (rad), velocity (rad/s) and acceleration (rad/s2) of the i-th pendulum;
ϕi0, ϕ̇i0 initial conditions of the i-th pendulum motion;
µi mass ratio mi/m1;
υ (rad) phase shift between the beam and pendulum 1;
ξ scale factor of the second pendulum (related to the first one);
A1i, A3i (m/s2) amplitudes of first and third harmonical component of the beam acceleration;
cϕ i (N s m) damping coefficient of the i-th pendulum damper;
cx (N s/m) damping coefficient of the damper between the beam and the basis;
F1i, F3i (m/s2) amplitudes of first and third harmonical component of the force between pendula and beam;
g (m/s2) gravity;
H13 (N2) square of the amplitude of the first harmonic component of the force acting on the beamwith three pendula;
H15, H35 (N2) square of the amplitude of the first and third harmonic component of the force acting on the beamwith

five pendula;
kx (N/m) stiffness coefficient of the spring between the beam and the basis;
l, li (m) length of the pendulum;
M (kg) mass of the beam;
MDi (N m) driven moment equal to 0 or MN i, depending on ϕi and ϕ̇i;
MNi (N m) moment of force generated by escapement mechanism;
m, mi (kg) mass of the pendulum;
N number of periods T of pendula oscillations (NT — unit of time);
T (s) period of the beam–pendula system oscillations;
Ti0 (s) period of i-th pendulum oscillations when the beam is at rest;
Ti (s) period of the oscillations of i-th pendulum hanging solo on the moving beam;
Tm (s) period of long-period synchronization;
t (s) time;
U (kg) global mass of the system (beam plus pendula);
WDAMP

beam (N m) energy dissipated by the beam during one period of motion;
WDAMP

i (N m) energy dissipated by the i-th pendulum during one period of motion;
WDRIVE

beam (N m) energy delivered to the beam during one period of motion;
WDRIVE

i (N m) energy delivered to the i-th pendulum during one period of motion;
W VDP

i (N m) energy delivered to the i-th pendulum by van der Pol positive damping during one period of motion;
W SYN

i (N m) energy delivered from the i-th pendulum to the beam during one period of motion;
X (m) amplitude of the beam oscillations;
X1i, X3i (m) amplitudes of first and third harmonical component of the beam oscillations;
x, ẋ, ẍ displacement (m), velocity (m/s) and acceleration (m/s2) of the beam;
x0, ẋ0 initial values of displacement and velocity of the beam;

level of energy and they move synchronously in opposite directions. The original Huygens’ problem has been also related to
a practical application of avoiding resonance during the start up procedure of speeding two unbalanced rotors.

The system very close to the one considered by Huygens (i.e., two pendulum clocks with cases hanging from the same
beam) has been investigated by Senator [36] who developed a qualitative approximate theory of clocks’ synchronization.
This theory explicitly includes the essential nonlinear elements of Huygens’ system, i.e., the escapement mechanisms but
also includes many simplifications.

A device mimicking Huygens’ clock experiment, the so-called ‘‘coupled pendula of the Kumamoto University’’ [38],
consists of two pendula which suspension rods are connected by a weak spring, and one of the pendula is excited by an
external rotor. The numerical results of Fradkov & Andrievsky [39] show simultaneous approximate in-phase and antiphase
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Fig. 1. An original drawing of Huygens illustrating his experiments with pendulum clocks.

Fig. 2. Details of the Huygens’ experiment; it is clearly visible that the clocks used in the experiment have not been identical, D denotes the weight used
to stabilize the clock case.

Fig. 3. Synchronization of two metronomes; (a) in-phase synchronization, (b) antiphase synchronization.

synchronization. Both types of synchronization can be obtained for different initial conditions. Additionally, it has been
shown that for small difference in the pendula frequencies they may not synchronize.

A very simple demonstration device was built by Pantaleone [40]. It consists of two metronomes located on a freely
moving light wooden base as shown in Fig. 3(a, b). The base lies on two empty soda cans which smoothly rolls on the
table. Both in-phase (Fig. 3(b)) and antiphase (Fig. 3(a)) synchronization of the metronomes have been observed. The
synchronization problem for larger number of metronomes has been studied in [41–43].
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The problem of clocks synchronization is also studied by Blekhman [7] where the clocks have been modeled as
van-der Pol’s type self-excited oscillators (as in [40,41]). Blekhman also discusses Huygens’ observations, and recounts the
results of a laboratory reproduction of the coupled clocks as well as presenting a theoretical analysis of oscillators coupled
through a common supporting frame. He predicted that both in-phase and anti-phase motions are stable under the same
circumstances.

A synchronous regime in the Huygens’ problem is studied by Kanunnikov & Lamper [35] with allowance for nonlinear
interaction between the transversal oscillations of a beam and clock’s pendula. The case where the motion of the pendula is
synchronous and close to the out-of-phase motion is studied.

In this report we repeat Huygens’ experiment using real pendulum clocks. We have been trying to perform this
experiments in the same way as Huygens did them. We hang two clocks on the same beam and observe the behavior of
the pendula. The clocks in the experiment have been selected in such a way as to be as identical as possible. It has been
observed that when the beam is allowed to move horizontally the clocks can synchronize both in-phase and anti-phase. As
we notice some small differences in the pendulum lengths and periods (so small to be identified in the Huygens’ time) we
perform computer simulations to answer the question: how the nonidentity of the clocks influences the synchronization
process. We show that even the clocks with significantly different periods of oscillations can synchronize, but their periods
are modified by the beam motion so they are obviously no more accurate.

This review paper is organized as follows. Section 2 briefly describes the history of mechanical clocks. The clock
mechanisms necessary for the compensation of the energy dissipation due to friction [47–50] are described. In Section 3
we describe the coupling through elastic structure and explain why this type of coupling is different from other types
used in the network synchronization schemes. The main Section 4 recalls original Huygens experiment and discusses the
synchronization of two clocks. We give explanation why and under which conditions two clocks can synchronize. We
discuss the possibility of the chaotic behavior in pendulum clocks [51]. Section 5 describes the behavior of more than
two coupled clocks. We present the results of the numerical studies and the experimental visualization of different types
of synchronization. We give theoretical explanation of the existence of only three or five clusters of the synchronized
pendula [42,43]. Later, we discuss the influence of the parameter mismatch on the behavior of the system [46]. Finally,
we summarize our results in Section 6.

2. Pendulum clocks

2.1. Brief history of mechanical clocks

In the early-to-mid-14th century, large mechanical clocks began to appear in the towers of several large Italian cities.
These clocks were weight-driven and regulated by a verge-and-foliot escapement [48]. This mechanism pre-dates the
pendulum and was originally controlled by a foliot, a horizontal bar with a weight at each end [52] (the details of this
mechanism design are given in Section 2.2).

A significant advance was the invention of spring-powered clocks between 1500 and 1510 by a German locksmith Peter
Henlein [2]. Replacing the heavy drive weights permitted the smaller clocks. Although they slowed down as the mainspring
unwound, they were popular among wealthy individuals due to their size and the fact that they could be put on a shelf or
table instead of hanging from the wall.

The pendulum clock was invented in 1656 by Ch. Huygens, and patented the following year [53]. The sketches of the
first two designs of the pendulum clocks are shown in Fig. 4(a, b). Huygens was inspired by investigations of pendula by
Galileo Galilei beginning around 1602. Galileo discovered the key property that makes the pendula the useful timekeepers,
i.e., isochronism, which means that the period of swing of a pendulum is approximately the same for different sized
swings [54]. He designed the pendulum clock shown in Fig. 5, but there are no evidences that it has ever been built.
The introduction of the pendulum, the first harmonic oscillator used in timekeeping, increased the accuracy of the clocks
enormously, from about 15 min per day to 15 s per day [55–59,51,60,48] leading to their rapid spread as the existing ‘verge
and foliot’ clocks were retrofitted with pendula.

These early clocks, due to their verge escapements, had wide pendulum swings of up to 100°. Huygens discovered that
wide swings made the pendulum inaccurate, causing its period, and thus the rate of the clock to vary with unavoidable
variations in the driving force provided by the movement [27,28]. The observation that only the pendula with small swings
of a few degrees are isochronous motivated the invention of the anchor escapement around 1670, which reduced the
pendulum’s swing to 4°-6° [48]. In addition to the increased accuracy, this allowed the clock’s case to accommodate longer,
slower pendula, which needed less power and caused less wear on the movement.

To summarize the description, all mechanical pendulum clocks have five basis parts as shown in Fig. 6, i.e.:
(i) a power source; either a weight on a cord that turns a pulley, or a spring, (ii) a gear train that steps up the speed

of the power so that the pendulum can use it, (iii) an escapement that controls the speed and regularity of the pendulum.
It transfers the energy stored in the spring to the motion of the pendulum by means of wheels, gears, and ratchets, i.e., it
gives the pendulum precisely timed impulses to keep it swinging, andwhich releases the gear train wheels tomove forward
a fixed amount at each swing, (iv) the pendulum, a weight on a rod, (v) an indicator or a dial that records how often the
escapement has rotated and therefore how much time has passed, usually a traditional clock face with rotating hands.
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Fig. 4. (a) The first pendulum clock, invented by Christiaan Huygens in 1656. (b) The second verge pendulum clock built in 1673.

Fig. 5. Pendulum clock conceived by Galileo Galilei around 1637. The earliest known pendulum clock design, it was never completed.

2.2. Escapement mechanisms

An escapement transfers energy to the clock’s timekeeping element (usually a pendulum or foliot) to compensate the
energy dissipation during a cycle as without the energy transfer, the oscillation of the pendulum (foliot) will decay [62]. The
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Fig. 6. The sketch of the basic components of a pendulum clock with anchor escapement. (after [61]: (1) pendulum; (2) anchor escapement arms;
(3) escape wheel; (4–7) gear train; (8) gravity-driven weight; (9–11) energy supply mechanism, (12–14) transition mechanism, (15,16) clock’s hands.

escapement may take the energy from a coiled spring or suspended weight [63]. The escapement also permits each cycle
of the timekeeping element to be counted. During each cycle, the escapement permits a gear train to advance or ‘‘escape’’
slightly. The periodic advancement results in moving the timepiece’s hands forward at a steady rate.

With each swing of the pendulum, one of its arms releases one tooth of a gear, making it change from a ‘‘locked’’ state to
a ‘‘drive’’ state for a short period that ends when another tooth on the gear strikes the opposite arm of the pendulum, which
locks the gear again. It is this periodic release of energy and rapid stopping that makes a clock ‘‘tick;’’ it is the sound of the
gear train suddenly stopping when the escapement locks again.

The invention of the escapement mechanism has a significant influence on the history of technology as it made the all-
mechanical clock possible [2,58]. This development in 13th century Europe initiated a change in timekeepingmethods from
continuous processes, such as the flow of water in water clocks, to repetitive oscillatory processes, such as the swing of
pendula, which could yield more accuracy [64–66].

Greek washstand automaton of the 3rd century BC is the earliest known example of an escapement mechanism [16]. The
earliest liquid-driven escapement was described by the Greek engineer Philo of Byzantium (3rd century BC) in his technical
treatise Pneumatics (chapter 31) as part of a washstand. A counterweighted spoon, supplied by a water tank, tips over in a
basin when full, releasing a spherical piece of pumice in the process. Once the spoon has emptied, it is pulled up again by
the counterweight, closing the door on the pumice by the tightening string. Philo’s comment that ‘‘Its construction is similar
to that of clocks’’ indicates that such escapement mechanisms were already used in ancient water clocks [16].

In China around 723 AD, during the period of the Tang Dynasty Buddhist monk Yi Xing along with government official
Liang Lingzan applied the escapement in the water-powered armillary sphere and clock drive [67]. The Song Dynasty
(960–1279) era horologists Zhang Sixun and Su Song (1020–1101) duly applied escapement devices in their astronomical
clock towers [67,68].

A mercury escapement mechanism has been described in the work of the king of Castile Alfonso X. The knowledge of
these mercury escapements may have spread through Europe with translations of Arabic and Spanish texts [69].

None of these were true mechanical escapements, since they still depended on the flow of liquid through an orifice to
measure time. For example, in Su Song’s clock water flowed into a container on a pivot. The escapement role was to tip the
container over each time it filled up, thus advancing the clock’s wheels each time an equal quantity of water was measured
out.

The first mechanical escapement is the verge-and-foliot mechanism invented by Villard de Honnecourt in XIV century
Europe. It was a primitive apparatus that was apparently a timekeeping device, but without being subject to any minute
requirement of accuracy [58]. It was used in a bell ringing apparatus called an alarum for several centuries before it was
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adapted to clocks [66]. In 14th century Europe it appeared as the timekeeper in the first mechanical clocks, whichwere large
tower clocks. Its origin and first use is unknown because it is difficult to distinguish which of these early tower clocks were
mechanical, and which were water clocks. However, indirect evidence, such as a sudden increase in cost and construction
of clocks, points to the late 13th century as the most likely date for the development of the modern clock escapement.
The astronomer Robertus Anglicus wrote in 1271 that clockmakers were trying to invent an escapement, but had not been
successful yet [70].

On the other hand, most sources agree that mechanical escapement clocks existed by 1300. The earliest description of
themechanical escapement can be found in Richard ofWallingford’s manuscript Tractatus Horologii Astronomici of 1327 AD,
on the clock he built at the Abbey of St. Albans. (Jones, 2000, Dohrn-van Rossum, 1996). It consisted of a pair of escape wheels
on the same axle, with alternating radial teeth. The verge rod was suspended between them, with a short crosspiece that
rotated first in one direction and then the other as the staggered teeth pushed past.

Unlike the continuous flow of water in the Chinese device, the European medieval escapements were characterized by a
regular, repeating sequence of discrete actions and the capability of self-reversing action. Both techniques used escapements,
but these have only the name in common. The Chinese one worked intermittently; the European, in discrete but continuous
beats. Both systems used gravity as the prime mover, but the action was very different. In the mechanical clock, the falling
weight exerted a continuous and even force on the train, which the escapement alternately held back and released at a
rhythm constrained by the controller. Ingeniously, the very force that turned the scape wheel then slowed it and pushed
it part of the way back. In other words, a unidirectional force produced a self-reversing action—about one step back for
three steps forward. In the Chinese timekeeper, however, the force exerted varied, the weight in each successive bucket
increases until it is sufficient to tip the release and lift the stop that held the wheel in place. This allowed the wheel to turn
some ten degrees and bring the next bucket under the stream of water while the stop fell back. In the Chinese clock, then
unidirectional force produced unidirectional motion [71].

The verge-and-foliot was the standard escapement used in every other early clock and watch and remained the only
escapement for 400 years [72]. Its friction and recoil limited its performance but the accuracy of these ‘verge-and-foliot’
clockswasmore limited by their early foliot type balancewheels, which because they lacked a balance spring had no natural
‘beat’, so there was not much incentive to improve the escapement [73].

The great leap in accuracy resulting from the invention of the pendulumand balance spring around 1657,whichmade the
timekeeping elements in both watches and clocks harmonic oscillators, focused attention on the errors of the escapement
andmore accurate escapements soon superseded the verge. The next two centuries, the ‘golden age’ ofmechanical horology,
saw the invention of perhaps 300 escapement designs [31,32,74,75], although only about 10 stood the test of time andwere
widely used [76]. The reliability of an escapement depends on the quality of workmanship and the level of maintenance
given [77]. A poorly constructed or poorly maintained escapement will cause problems. The escapement must accurately
convert the oscillations of the pendulum or balance wheel into rotation of the clock or watch gear train, and it must deliver
enough energy to the pendulum or balance wheel to maintain its oscillation. The most accurate commercially produced
mechanical clock was the Shortt-Synchronome free pendulum clock invented by W.H. Shortt in 1921, which had an error
rate of about 1 s per year [76].

Now, let us describe in more details two most commonly used escapement mechanisms.

2.2.1. Verge-and-foliot escapement
The earliest escapement in Europe (from about 1275) was the verge escapement, also known as the crown-wheel

escapement. It was used in the firstmechanical clocks andwas originally controlled by a foliot, a horizontal barwithweights
at either end. The sketch of the verge-and-foliot mechanism is shown in Fig. 7. A vertical shaft (verge) is attached to the
middle of the foliot and carries two small plates (pallets) sticking out like flags from a flag pole. One pallet is near the top of
the verge and one near the bottom and looking end-on down the verge the pallets are a little over ninety degrees apart. The
escape wheel is shaped somewhat like a crown and turns about a horizontal axis. The mechanism is driven by a constant
torque τ applied to the crown gear. This torque is usually provided by a mass hanging from a rope which is wound around
the shaft. The verge spins freely at all times except at the instant a collision takes place. Energy is assumed to leave the
system only through the collisions. The amount of energy lost during each collision is a function of the system geometry as
well as the coefficient of restitution realized in the collision [47]. As the wheel tries to turn, one tooth of the wheel pushes
against the upper pallet and starts the foliot moving. As the tooth pushes past the upper pallet, the lower pallet swings into
the path of the escape wheel. The momentum of the moving foliot pushes the escape wheel backwards but eventually the
system comes to rest. It is now the turn of the lower pallet to push the foliot and so on. The system has no natural frequency
of oscillation— it is simply force pushing inertia around. Verge-and-foliotmechanisms reigned formore than 300 years with
variations in the shape of the foliot. All had the same basic problem: the period of oscillation of this escapement depended
heavily on the amount of driving force and the amount of friction in the drive and was difficult to regulate.

A disadvantage of the escapement was that each time a tooth lands on a pallet, the momentum of the foliot pushes the
crown wheel backwards a short distance before the force of the wheel reverses the motion. This is called ‘‘recoil’’ and was a
source of wear and inaccuracy.

Let the crown gear and the verge have inertias Ic and Iv , contact radii rc and rv , and angular velocities (θ̇c (t), and θ̇v (t)),
respectively. The velocities before and after a collision are denoted by the subscripts 0 and 1, respectively. Themotion of the
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Fig. 7. Verge-and-foliot escapement mechanism (after [47]).

crown gear and verge is governed by the equations

θ̈c (t) =
1
Ic
τ −

rc
Ic
F

θc (t) , θv (t) , θ̇c (t) , θ̇v (t)


(1)

θ̈v (t) =


+

rv
Iv
F

θc (t) , θv (t) , θ̇c (t) , θ̇v (t)


, upper

−
rv
Iv
F

θc (t) , θv (t) , θ̇c (t) , θ̇v (t)


, lower

(2)

where the first expression in Eq. (2) applies to the collisions between the crown gear and the upper paddle,
and the second expression applies to the collisions between the crown gear and the lower paddle. The function
F

θc (t) , θv (t) , θ̇c (t) , θ̇v (t)


is the collision force, which is zero when the crown gear and verge are not in contact and

is impulsive at the instant of impact. The collision force F acts equally and oppositely on the crown gear and verge. Let us
define

σ ,


+1, upper
−1, lower (3)

and rewrite Eq. (2) in the following form

θ̈v (t) = σ
rv
Iv
F

θc (t) , θv (t) , θ̇c (t) , θ̇v (t)


. (4)

To determine the collision force, one can integrate Eqs. (1) and (4) across a collision, i.e.,

θ̇c1 − θ̇c0 = lim∆t→0


1
Ic

 t+∆t

t−∆t
τds −

rc
Ic

 t+∆t

t−∆t
F(s)ds


(5)

θ̇v1 − θ̇v0 = lim∆t→0


σ
rv
Iv

 t+∆t

t−∆t
F(s)ds


. (6)

Eliminating the integrated collision force in Eqs. (5) and (6) yields

σ Iv
rv
θ̇v0 +

Ic
rc
θ̇c0 =

σ Iv
rv
θ̇v1 +

Ic
rc
θ̇c1 (7)

which is an expression of conservation of linear momentum at the instant of a collision. Eq. (7) can be rewritten as

Mv Vv0 + Mc Vc0 = Mv Vv1 + Mc Vc1 (8)

where Mc = Ic/r2c and Mv = Iv/r2v are the effective crown gear mass and effective verge mass, respectively, and Vc and Vv
are the tangential velocities of the crown gear and the verge, respectively (Vc =̇ rcθc (t), and Vv = rv θ̇v (t)).

The coefficient of restitution e relates the linear velocities of the crown gear and the verge before and after the collision
according to

Vc1 − Vc0 = −e (Vc0 − Vv0) (9)
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Fig. 8. Anchor escapement.

which accounts for the loss of kinetic energy in a collision. Solving Eqs. (7) and (9) yields

∆θ̇c = −
Mv (1 + e)

rc (Mv + Mc)
Vc0 + σ

Mv (1 + e)
rc (Mv + Mc)

Vv0 (10)

∆θ̇v = σ
Mc (1 + e)

rv (Mv + Mc)
Vc0 −

Mc (1 + e)
rv (Mv + Mc)

Vv0 (11)

where ∆θ̇c , θ̇c1 − θ̇c0,∆θ̇v , θ̇v1 − θ̇v0 are the impulsive changes in angular velocity when a collision occurs. These
quantities depend on the geometry as well as the velocities immediately before the collision. The integral of the impulsive
force function over a collision event is t1

t0
F (s) ds =

McMv(1 + e)
Mv + Mc

(Vc0 − Vv0) (12)

where t0 is time slightly before the collision and t1 is time slightly after the collision.
The verge was the only escapement used in clocks and watches for 400 years. It was used in the first pendulum clocks

for about 50 years after the pendulum clock was invented in 1656. In a pendulum clock the crown wheel and verge were
oriented so they were horizontal, and the pendulum hung from the verge. However the verge is the most inaccurate of
the common escapements, and after modern timekeeping oscillators (the pendulum and the sprung balance wheel) were
introduced in the 1650s the verge was replaced by other escapements [78].

2.2.2. Anchor escapement
The anchor escapement mechanism shown in Fig. 8 was invented by Robert Hooke around 1660, the anchor quickly

superseded the verge to become the standard escapement used in pendulum clocks through the 19th century. Its advantage
was that it reduced thewide pendulum swing angles of the verge to 3 °–6 °, making the pendulum isochronous, and allowing
the use of longer, slower moving pendula, which used less energy. It is responsible for the long narrow shape of most
pendulum clocks.

It consists of an escape wheel with pointed, backward slanted teeth, and an ‘anchor’ shaped piece pivoted above it which
rocks from side to side, attached to the pendulum. The anchor has slanted pallets on the arms which alternately catch on
the teeth of the escape wheel, receiving impulses. Mechanically its operation has similarities to the verge escapement, and
it has two of the verge’s disadvantages: (1) The pendulum is constantly being pushed by an escape wheel tooth throughout
its cycle, and is never allowed to swing freely, which disturbs its isochronism, and (2) it is a recoil escapement; the anchor
pushes the escape wheel backward during part of its cycle. This causes a backlash, an increasedwear in the clocks gears, and
inaccuracy. These problems were eliminated in the deadbeat escapement, which slowly replaced the anchor in precision
clocks.

The deadbeat escapement of Fig. 9 was an improvement of the anchor escapement first made by Thomas Tompion to a
design by Richard Towneley in 1675 although it is often credited to Tompion’s successor George Graham who popularized
it in 1715 [48,58]. In the anchor escapement the swing of the pendulum pushes the escape wheel backward during part
of its cycle. This ‘recoil’ disturbs the motion of the pendulum, causing inaccuracy, and reverses the direction of the gear
train, causing backlash and introducing high loads into the system, leading to friction and wear. The main advantage of the
deadbeat is that it eliminated a recoil [66].

In the deadbeat, the pallets have a second curved ‘‘locking’’ face on them, concentric about the pivot the anchor turns
on. During the extremities of the pendulum’s swing, the escape wheel tooth rests against this locking face, providing no
impulse to the pendulum, which prevents the recoil. Near the bottom of the pendulum’s swing the tooth slides off the
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Fig. 9. Deadbeat escapement mechanism.

locking face onto the angled ‘‘impulse’’ face, giving the pendulum a push, before the pallet releases the tooth. This was the
first escapement to separate the locking and impulse actions of the escapement. The deadbeat was first used in precision
regulator clocks, but due to greater accuracy superseded the anchor in the 19th century. It is used in almost all modern
pendulum clocks.

Now let us describe the dynamics of a typical anchor mechanism as shown in Fig. 10(a)–(c).
The escapementmechanism consists of the scapewheel (details are shown in Fig. 10(b)) and two anchor palletsmounted

on the pendulum axis (details are shown in Fig. 10(c)). The energy is supplied by a wound spring connected with the scape
wheel. The escapement mechanism acts as shown in Fig. 11(a)–(d). In the first stage one of the triangle shaped teeth of the
scape wheel impacts the pallet I. For the angle of pendulum displacement ϕ < 0 (Fig. 11(a)) surface A of the pallet I slides
on the top edge of the triangle teeth 1 and excitation momentM = 0. In the case of 0 < ϕ < γN (Fig. 11(b)) the edge of the
pallet I is in contact with the side surface of the teeth 1 and the horizontal component of the reaction generates excitation
momentMN . When increasing ϕ passes critical value γ , pallet I slides off the teeth 1 and the second stage of the mechanism
acting starts. The teeth 1 impacts on the pallet II. For ϕ > 0 (Fig. 11(c)) surface B of the pallet II slides on the edge of the
teeth 1 and no excitationmoment is generated.When−γN < ϕ < 0 (Fig. 11(d) the edge of the pallet II is in contact with the
side surface of the teeth 1 and the horizontal component of the reaction generates excitationmoment−MN .Whenϕ exceeds
the critical value −γN , i.e., ϕ < −γN the pallet II slides off the teeth 1. Next, the successive teeth 2 impacts pallet I and the
first stage starts again. Notice that when maximum absolute value of ϕ is smaller than γN the escapement mechanism does
not work (the transition from step I to step II is impossible) and the pendulum tends to the equilibrium position ϕ = 0.

2.3. Dynamics of clocks

The pendulum clock is an oscillatory mechanism with self-excited oscillations whose amplitude is independent of the
initial conditions (dynamical system has a stable limit cycle attractor [79–81]. To start the oscillations a rather strong initial
impulse is required; failing this the clock goes back to rest, i.e., dynamical system has an additional fixed point attractor
which is obtained for the initial conditions close to zero. For certain positions of the pendulum the control operates and
allows the required energy to pass in the form of an impulse [82–84]. The duration of the impulse varies from clock to clock,
but in the good clocks it is quite short. The control operates generally twice per period, close to the position of equilibrium,
i.e. where the velocity is the greatest. An important feature is that themoment when the control operates depends solely on
the position of the pendulum. Furthermore its action, and notably themagnitude of the impulse, depends on the state of the
pendulum. Hence the whole operation depends on the position and velocity of the parts and not on time. Thus a clock is an
autonomous system [50]. The main properties of the clock’s model are summarized in Fig. 12. The initial conditions starting
in the shaded region after a finite number of pendulum’s oscillations lead to the equilibrium (0, 0), while these starting in
the rest of the plane tend to the limit cycle (shown in red).

For simplicity, we can assume that the control acts once in each period of the pendulum, producing an instantaneous
change in velocity. One can consider two ‘‘laws of impulse’’, one asserting that the change in velocity is constant, the other
that the change in kinetic energy is constant, i.e., if v0 and v1 are the velocities of the pendulum just before and after the
impulse, the first states thatmv1−mvo = constant, the second thatmv21 −mv20 = constant. The second is very natural since
it holds exactly when the unwindingmechanism consists of a weight which is displaced downward the same distance (thus
doing the samework) in each period. Of the two assumptions, the second is more plausible since it asserts that each impulse
contributes the same amount of energy. The first assumption may imply a larger change of energy for some impulses than
for others; the lower the velocity before the impulse the less energy transferred to the system. In addition to the nature of the
impulse there are also hypotheses to bemade regarding friction. The simplest are: (a) linear friction, or friction proportional
to the velocity; (b) constant friction. The friction in an actual clock is partly of a constant type, as in that of control and partly



12 M. Kapitaniak et al. / Physics Reports 517 (2012) 1–69

Fig. 10. Anchor escapement mechanism; (a) scheme of the mechanism, (b) view of the scape wheel, (c) view of the anchor pallets.

variable, as in that from the air resistance of the pendulum. Constant friction is related to the property of soft self-excitation
and the necessity of a strong impulse to start the periodic limit cycle oscillations. In [50] one can find the proof that the
model considering the second impulse law and a combination of both types of friction can exhibit a limit cycle behavior and
capture the main properties of the clocks.
(i) Discontinuous model

The equation of motion of the clock’s pendulum is as follows:

ml2ϕ̈ + cϕ ϕ̇ + m gl sinϕ = MD, (13)
where MD is the momentum supplied by the escapement mechanism (see Section 3.2), i.e., in the first stage if 0 < ϕ < γN
then MD = MN and when ϕ < 0 then MD = 0 and for the second stage one has for −γN < ϕ < 0 MD = −MN and for
ϕ > 0MD = 0. When max ϕ(t) < γN there are switches between two stages andMN = 0. Eq. (13) describes the dynamical
system which performs the self-excited oscillations [50].

The clocks are designed in such a way that the pendula perform periodic motion with a period 2π/α where α is
constant. The escapement mechanism provides the necessary amount of energy to compensate the dissipation and makes
the pendulummotion periodic. Under these assumption in the stable motion of the clock’s pendula has been approximated
by:

ϕ = Φ sin (αt) , (14)
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Fig. 11. Acting of the escapement mechanism.

Fig. 12. An autonomous model of the clock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

whereΦ is constant. The continuous solution given by Eq. (14) is a good approximation of the pendula’ oscillations calculated
fromdiscontinuous equation (13) as can be seen in Fig. 13. A stable limit cycle calculated from Eq. (13) is shown in bluewhile
the approximation given by Eq. (14) is shown in red. Notice that for initial conditions −γN < ϕ0 < γN ,−αγNϕ̇0 < γN
Eq. (13) has a stable fixed point attractor at (0, 0).

Typically pendulum clocks oscillate with amplitude smaller than 2π/36 and for clocks with long pendula like marine
clocks this amplitude is even smaller [48].
(ii)Moon’s model

In a series of papers [59,51,60], the followingmathematicalmodel has been considered. It involves the impact as a generic
model designed to capture the essential features for chaos in clocks.

The model incorporates the following assumptions and features: (i) the pendulum is modeled by a linear harmonic
oscillator with light damping, (ii) the impact dynamics in the escapement and the propagation of structural dynamics
through bearings with gaps is modeled by a cubic oscillator of the Duffing-type coupled linearly [85–87] to the pendulum
equation, (iii) the driving gear train torque and static friction lock-up are modeled by a threshold condition of structural
impact velocity as measured by the Duffing oscillator, and (iv) the driving torque from the weight-driven gear train, when
released by the Duffing oscillator noise, acts to add energy through the escapement pallet when the pendulum velocity is
positive.
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Fig. 13. Comparison of the numerical solution of discontinuous equation (13) with the harmonic assumption (14). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The first assumption (i) is based on the fact that the pendula in clocks rotate through a very small amplitude such that the
nonlinear effects are not important [88,8]. The linear oscillator assumption is also good for balance wheel clocks. The second
assumption (ii) is motivated by the research on the propagation of stress waves in structures. Both the experimental and the
theoretical research show that a single impact or a step input load on a structure leads to complex wave patterns through
reflections and dispersions which excite many modes in the structure. Thus, the escapement impact energy redistribution
can propagate into the gear train, break the friction and prevent the lock-up. These assumptions lead to the following
equations of motion for the coupled pendulum, structural dynamics and driving train. This fourth-order model employs
a vibration-sensitive torque to capture the escapement impact:

ẍ1 + β1ẋ1 + ω2
1x1 + α1x3 = tq (x3) sign (ẋ1) (15)

ẍ3 + β2ẋ3 + ω2
2x3 + κx33 + α2x1 = 0 (16)

where

tq (ẋ3) = T0 if ẋ23 > δ and 0 < x1 < ∆

tq (ẋ3) = 0 otherwise.

Here x1(t) represents the motion of the pendulum or balance wheel oscillator; x3(t) represents the motion of the
structural connection between the escapement and the driving train; the cubic term is a nonlinear surrogate for the gaps
between bearings and gear teeth. The torque dependence on structural velocity is an attempt to capture the static friction
in the drive train and its dependence on the structural vibration.

The frequency ω1 represents the regular motion of the clock oscillator. The damping constants β1 and β2 measure the
oscillator and structural damping, respectively. The escapement torque is only applied when the amplitude is in a given
sector of the phase space, e.g. 0 < x1 < ∆. Thus, ∆ should be a small fraction of the limit cycle amplitude. In addition, the
noise threshold to release the gears and apply the escapement torque is measured by constant δ.

To ensure that the model does not generate vibrations when the impact torque tq is zero, an energy function can be
constructed that places restrictions on the constants in the abovemodel. Multiplying the first equation above by α2(dx1/dt),
the second equation by α1(dx2/dt) and adding, one comes up with the following energy equation:

d
dt

[T + V ] = α2tq (ẋ3) ẋ1 − α2β1ẋ21 − α1β2ẋ23 (17)

where

T =
1
2


α2ẋ21 + α1ẋ23


V =

1
2


α2ω

2
1x

2
1 + α1ω

2
2x

2
3 + 2α1α2x1x2


+

1
4
α1κx43.

Here T acts like a kinetic energy function and V like the potential energy function. To ensure energy decay when tq = 0,
both α1 and α2 must be positive as well as the nonlinear stiffness constant, k. When the torque is active, the product,
tq(dx1/dt),must be also be positive, thus the reason for appearance of the sign(dx1/dt) function in the model.
(iii) Impulsive differential equations’ model

In this sectionwe describe the equations ofmotion of the escapementmechanism in the form of an impulsive differential
equation [89,90,47]. An impulsive differential equation is described by three components; namely, a continuous time
differential equation, which governs the system state between the impulses, an impulse equation, which models an
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impulsive jump defined by a jump function at the instant an impulse occurs, and a jump criterion, which defines a set
of jump events in which the impulse equation is active. These components can be written in the form

ẋ (t) = fc (x (t)) , x(t) ∉ S (18)

∆x (t) = fd (x (t)) , x(t) ∈ S (19)
where t ≥ 0, xεRn, fc : Rn

→ Rn is locally Lipschitz continuous; fd : Rn
→ Rn is continuous; and S ∈ Rn is the jump set.

Eqs. (18) and (19) describe the impulsive dynamical system G.
The dynamics of the verge and foliot escapement mechanism as an impulsive differential equation define the state

x = [x1, x2, x3, x4]T ,

θ1, θ2, θ̇3, θ̇4

T
(20)

where x1 is the position of the crown gear, that is, the counterclockwise angle swept by the line connecting the center of
the crown gear and the 0-th tooth from the 12 o’clock position; x2 is the position of the verge, that is, the deviation of the
mean line of the angular offset between two paddles from the vertical plane perpendicular to the plane of the crown gear;
x3 is the angular velocity of the crown gear; and x4 is the angular velocity of the verge. Between collisions the state satisfies

ẋ (t) =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 x (t)+

 0
0

1/Ic
0

 τ
while the jump function is given by

fd (x) =

0 0 0 0
0 0 0 0
0 0 −rcGc σ rvGc
0 0 σ rcGv −rvGv

 x

where

Gc ,


Iv /r2v


(1 + e)

rc

Iv /r2v


+

Ic /r2c

 , Gv ,


Ic /r2c


(1 + e)

rv

Iv /r2v


+

Ic /r2c

 .
The jump set is

S =


n

m=0

Supperm


n

m=0

S lower
m


where, form = 0, . . . , n

Supperm =


x : rc sin (x1 − mαc) = rv tan (x2 + αv/2) ,

rcx3 − rvx4 > 0,
(m − 1/2) αc + 2pπ ≤ x1 ≤ (m + 1/2) αc + 2pπ,

p ∈ {0, 1, 2, . . .}


S lower
m =


x : rc sin (mαc − x1) = rv tan (−x2 + αv/2) ,

rcx3 + rvx4 > 0,
(m − 1/2) αc + (2p − 1) π ≤ x1 ≤ (m + 1/2) αc + (2p − 1) π,

p ∈ {0, 1, 2, . . .}


where αc is the angle between neighboring teeth on the crown gear, αv is the angular offset of the paddles about the vertical
axis,m is the index of the crown gear tooth involved in the collision and p is the number of full rotations of the crown gear.
The crown gear teeth are numbered from 0 to n clockwise, or opposite the direction of increasing θc , beginning at θc = 0.
There must be an odd number of crown gear teeth for the mechanism to function correctly, and thus n is even.
(iv) Continuous model with van der Pol’s damping

Instead of the models with an impulse supply of energy to the clock pendulum (i–iii), a van der Pol oscillator model with
a continuous supply of energy can be considered [91,8,40,41]. In this case the equation of motion of a single pendulum clock
is as follows,

d2θ
dt2

+
mrc.m.

l
sin θ + ϵ


θ

θ0

2

− 1


dθ
dt

= 0 (21)

where θ is the angle the pendulummakes with the vertical, I is the moment of inertia of the pendulum,m is the mass of the
pendulum, rc.m. is the distance of the pendulum’s center of mass from the pivot point, g is the acceleration of gravity,and x is
the horizontal position of the base. The first two terms in Eq. (21) are the usual ones that describe themotion of a pendulum,
that is, the angular acceleration and the gravitational torque. The third term in Eq. (21) crudely models the escapement
mechanism and any damping of the bob’s motion from air resistance. This term is of van der Pol’stype and increases the
angular velocity for θ < θ0 and decreases it for θ > θ0. For small ϵ, this term will produce stable oscillations with an
amplitude of approximately 2θ0 in the isolated oscillator.
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3. Modeling Huygens’ experiment: coupling through elastic structure

3.1. Coupling in Huygens’ experiment

In his letters Huygens limited himself to explaining the observed phenomenon of synchronization by describing the
setup (as shown in Figs. 1 and 2), noting the basic coupling mechanism, and describing how a steady synchronized state
is approached. Huygens originally thought the coupling was due to imperceptible air-borne forces transmitted between
the pendula of the two clocks (letter to his father [5]), but within a few days he realized (letter to Moray [5]) that the
coupling was due to structure-based forces. Huygens’ published explanation can be summarized in the following way: the
common beam [28] or the two coupled beams [5] from which the extended clock cases are suspended can move (oscillate)
horizontally, at least with small amplitudes. The two pendula, oscillating in the same (or parallel planes), transmit through
their pivots the oscillating forces on two clock-cases, which, in turn, transmit through their pivots the oscillating forces on
the beams which cause them to oscillate. Only in the case of the two pendula which started in ideal opposition, the zero
resultant oscillating force on the beams causes the beams to stay in the equilibrium position. As the two nearly identical
clocks initially run at slightly different speeds their pendula eventually get in opposition, two oscillating force components
almost completely cancel, and the motion of the beams goes to zero. Then two clocks adjust their speeds, and their pendula
remain in opposition. Huygens had noted two basic features of his setup—the clocks adjusting their speeds to common speed
(Huygens’ two clocks, when running independently, differed by daily average times that ranged from−0.5 to 6 (s) [28]; and
the structure-based origin of the coupling forces.

This type of coupling is different from the one used in the most studies of the coupled oscillatory systems or coupled
networks (e.g., [8–10,92,6]) where the signal from one of the oscillators (network nodes) is transmitted directly to few (or
all) of other oscillators and influence its behavior. If the particular oscillator is n dimensional the dimension of the coupled
system (network) is equal to Nn, where N is a number of oscillators coupled in the considered system. In the Huygens type
coupling the oscillators are coupled to the additional M dimensional dynamical system B. The signals from the oscillators
are transferred to system B and influence its dynamical behavior. Simultaneously, the signals from system B are transmitted
to the oscillators also changing its dynamics. The transfer of any signal from one oscillator to another occurs always through
the system B. In the consideration of the dynamics of the coupled system one has to consider Nn + M dimensional model.
As in the mechanical systems (like Huygens’ setup) this additional system B is usually an elastic structure. We call this type
of coupling as the coupling through elastic structure [93–95]. Later in this section and Section 4 we describe how the energy
is transferred from one clock to another via the beam.

The studies of the dynamics of the systems coupled through the elastic structure have been also stimulated by the events
on the Millennium Bridge. On the opening day the Millennium Bridge, a pedestrian footbridge crossing the Thames River
in London, was observed to exhibit a pronounced lateral wobbling as more and more people streamed onto the bridge
[21,22,24,23,96,97,20]. This phenomenon apparently occurred due to a resonance between a low order bridge oscillation
mode and the natural average stepping frequency of humanwalkers: a small initial oscillation of the bridge induces some of
the walkers to synchronize the timing of their steps to that of the bridge oscillations, thus exerting a positive feedback
force on the bridge that derives the bridge oscillation to higher amplitude, eventually resulting in a large steady-state
oscillation. Subsequent studies by the bridge builder showed that the oscillations did not develop unless the number of
the pedestrians on the bridge was greater than a critical value [21,22]. Generally, the phenomenon on the Millennium
Bridge can be considered as a particularly dramatic example of the emergence of global collective behavior in the systems of
many coupled heterogeneous oscillators [18]. The examples of this general type of emergent behavior are known in biology
(e.g. synchronization of pacemaker cells in the heart [98] and of neurons governing day–night rhythms inmammals [19,13],
chemistry [15]).

The analysis of the coupled periodic oscillators can be based on Malkin’s theorem [7,99,100]. It gives general conditions
under which weakly connected periodic oscillators can be reduced to the analysis of the corresponding phase model.
Recently, this approach has allowed the derivation of a number of important results, mainly on the Kuramoto model [3].
The discontinuity of the clock model does not allow the application of this method in most of our models. In the case of
continuous model (Eqs. (68) and (69) in Section 3.5) the analysis based on Malkin’s theorem will be reduced to the analysis
of coupled van der Pol’s oscillator presented in [3].

3.2. Senators’ five degrees of freedom model

Korteweg studies [101] gave further explanations of Huygens’ observed phenomena. He developed a dissipationless,
three-degree-of-freedom, linear model that represents some features of the original setup of Fig. 1 (his model is essentially
equivalent to the one formed from the five-body (two clocks cases, two pendula and a beam) system shown in Fig. 1 by
clamping each extended clock-case to its support beam, removing all friction, and removing the escapements). Korteweg
then investigated how the observed natural frequencies andmode shapes would vary as model’s parameters vary, and used
his study results to make the hypothesis that explained the observed behavior of Huygens’ real system. Korteweg’s basic
idea can be summarized as follows: the stable, steady-state motions of the real, nonlinear, two coupled clock system can be
approximately represented by his model vibrating in one of its normal modes at the corresponding natural frequency. The
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approximating mode and its frequency are found by; (i) adding linear friction to the model, (realistically assuming that the
pendulum friction is extremely small while the beam-motion friction is small), (ii) determining the exponentially-damped
oscillating modes of the lightly damped linear model which persist the longest and (iii) identifying the undamped normal
mode thatmost closely approximates this persisting dampedmode. It was found that the undampedmode corresponding to
the persisting dampedmodewould have a frequency between the frequencies of the two pendula (oscillating independently
from fixed pivots) and a mode shape with the pendula moving in opposition to each other. Korteweg studies showed that
the actual nonlinear system’s motion would be approximately like a modal motion of a related dissipationless linear system
having similar inertial and stiffness properties; and that relative friction magnitudes would determine which mode would
be the approximating one [36].

Following the path of Korteweg Senator [36] developed a five degrees of freedom model shown in Fig. 14. The aim of
his study was to develop simple intuitive approximate theory that would explain the observed clocks’ synchronizations.
The developed theory considers the essential nonlinearities and discontinuities of the system, i.e., the impulsive acting of
the escapements; allows consideration of non-identical clocks; and explicitly includes the suspended clock-case feature of
Huygens’ setup.

In addition to forming and analyzing the related dissipationless and damped-linear systems having the same
inertial/stiffness/(damping) properties as the original nonlinear system, other related systems are also formed and analyzed.
These include the related dissipationless nonlinear systems having the same inertial/stiffness/escapement properties as the
original systems, and the related constrained single-degree-of-freedomnonlinear systems formed from the original systems
by adding judiciously chosen rigid, massless, frictionless linear constraints. When the generalized constraining (reaction)
forces/impulses of these systems are small, the necessarily proportional steady-state motions of these constrained systems
are expected to accurately approximate the steady-state motions of the original intractable nonlinear systems.

Senator’s approach is based on three main simplifications. One simplification used is to ignore all large amplitude
pendula’ oscillations, so the angles between the pendula and their vertical equilibrium positions and the rates of change
of these angles are assumed to always remain small. The second simplification is to linearize all dampers (friction based
dissipative elements). This linear friction simplification captures two essential features of the actual friction in the Huygens
experiment, i.e., that at intermediate and high velocity amplitudes, friction forces increase as velocity magnitude increases,
and, for suitably small friction parametermagnitudes, that cyclic energy dissipated is small in comparison to the energy that
is cyclically converted between potential and kinetic forms. The third simplification is connected with the modeling of the
nonlinear energy resupply features of the escapement mechanism. Huygens’ pendulum clocks used a almost-400-year-old
verge-and crown-wheel escapement design (see Fig. 7 and Section 2.2.1) for which Senator used the constant-impulse-
magnitude escapement model of Andronov et al. [50]. For this model, at two opposite points in the pendulum displacement
cycle, a crown-wheel tooth hits a pallet (the escapement fires), and a constantmagnitude impulse is applied between a rigid
body having the effective inertia of the pendulum at the pitch radius of the impact, and a rigid body having the effective
inertia of the driving train at the pitch radius of the impact.

The sketch of Senator’s model is shown in Fig. 14. It shows two coupled clocks, sliding beam and the suspended clock’s
cases which form the five-degree-of-freedom model. The coordinate vector is defined as x = {x1, u2, y, u4, x5}, where the
xi, (i = 1, 5), denote the horizontal relative displacements of the pendulummass centers measured from the center lines of
the pivoted clock cases, uj, (j = 2, 4), denote the horizontal relative displacements of the clock-case mass centers measured
from vertical lines drawn on the support mass, and y denotes the absolute horizontal displacement of the support mass
(this coordinate ordering reflects the connectivity of the rigid bodies that comprise the model). The dissipation is modeled
by two viscous dampers, both exerting horizontal retarding forces on the pendulum at its mass center. The friction in the
pivot is modeled by a viscous damping coefficient, cpivot , which multiplies the relative component of horizontal velocity
ẋ, while the air resistance is modeled by a viscous damping coefficient, cair , which multiplies the absolute component of
horizontal velocity, which for this model is the same as the relative component. The escapement mechanism acts whenever
relative displacement x, is zero and relative velocity ẋi is non-zero. At each of these instants the escapement fires, imparting
a horizontal impulse of fixed magnitude Ii (i = 1, 5), located between the pendulum and the clock-case at the level of the
mass center of the pendulum, acting on the pendulum in the direction of its relative velocity ẋi.

Twelve parameters characterize the geometric and dynamical properties of both clock’s pendulum, i.e.,mi themass of the
i-th pendulum, ei the i-th pendulum’s length (the distance from its pivot to its mass center), αi the square of the ratio of the
pendulum’s radius of inertia about its mass center to its length (inertial effects of the connected linkage, gear pair, and verge
are included by increasing a so that total kinetic energy still equals 1

2mi(1+ αi)ẋ2i ), cpivot i, cair i. as damping coefficients, and
Ii escapement mechanism parameters. Twelve additional parameters describe this pivoted-case model, i.e., the individual
clock-case masses mj, the individual clock-case lengths ej, the individual squares of ratios of radii of gyration about mass
centers to lengths, αj, the individual pivot damping coefficient cpivot j; the individual air damping constants, cair j, and the
individual offsets of the pendulum pivots (the downward distances along the clock-case centerlines from the clock-case
pivots to the pivots of the pendula) oj, (j = 2, 4). Finally, the beam is characterized by three support parameters, 2msup,
2csup, and 2ksup. The resultant gravitational force on the i-th pendulum (or j-th clock’s case) has magnitude mig , and acts
downward through the mass center of the pendulum.

For the model of Fig. 14 one can derive a set of 5 linear second order differential equations (for details see [36]). After
a complicated procedure of the parameters identification it was found [36] that the developed theory allows finding the
regions in parameter space for which one can predict, with high certainty, whether or not synchronization can occur.
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Fig. 14. Senator’s model of the Huygens experiment (after [36]).

When synchronization is predicted (it is predicted that, as Huygens observed, the two clocks will synchronize with the
pendula moving nearly in opposite phase), the theory allows determining the basic characteristics (approximate frequency,
amplitudes, and relative phases) of the synchronized motions.

3.3. Model of two double spherical pendula

Examining the structure of the Huygens’ setup (Fig. 1) one can expect the spherical motion of both clock cases (allowed
by the method the clocks were hung from the beam) and the pendula so before describing the model used in our studies let
us introduce the general model based on the coupled double spherical pendula. The system consists of a beam of mass M,
moving along axis x and two spherical double pendula as shown in Fig. 15.

Each double spherical pendulum consists of: (i) upper spherical physical pendulum: two masses m1i and m3i mounted
on a light rod, at distances l1i and l3i from the point of attachment, (ii) lower spherical pendulum length l2i and mass m2i.
In this model upper pendula represent clock cases, lower pendula clocks’ pendula. The mass m1i and distances l1i and l3i
determine the position of the center mass and inertial momentum of the clock. The oscillations of the pendula are damped
by the linear dampers cϕ1i, cυ1i, cϕ2i and cυ2i (not shown in Fig. 15).

The assumed structure of the upper pendulum allows the flexible selection of the value of its massmui, the position of the
center of mass lui and inertial momentum Bui (in relation to an axis perpendicular to the rod of the pendulum and passing
through the center of its mass).

In the assumed one-dimensional case (Fig. 16) one has: mui = m1i + m3i,muilui = m1il1i + m3il3i and Bui = m1i(lui −

l1i)2 + m3i(lui − l3i)2. These equations allow for the estimation of the appointment m1i, m3i and l3i for given mui, lui and Bui.
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Fig. 15. Huygens’ experiment modeled with two coupled double spherical pendula.

Fig. 16. Geometry of the double-pendulum.

The fourth parameter characterizing the upper pendulum, the distance l1i, can be freely selected—for example, in such away
to have massm1 in the suspension point of the lower pendulum.

The kinetic energy T and the potential energy V of the system are given respectively as

E = 0.5Mẋ2 +

2
i=1


0.5m1(ẋ21 + ẏ21 + ż21)+ 0.5m3(ẋ23 + ẏ23 + ż23)+ 0.5m2(ẋ22 + ẏ22 + ż22)


and

V =

2
i=1

((m1i + m2i)gl1i(1 − cosϕ1i)+ m2igl2i(1 − cosϕ2i)+ m3igl3i(1 − cosϕ1i)) ,

where the independent coordinates: x, ϕ1i, ϑ1i, ϕ2i, ϑ2i, i = 1, . . . , 2 are defined as shown in Fig. 17.
The relation between the coordinates of material pointsm1i, m3i and m2i and independent coordinates is as follows:

x1i = x + l1i sinϕ1i cosϑ1i
y1i = l1i sinϕ1i sinϑ1i
z1i = l1i cosϕ1i
x3i = x + l3i sinϕ1i cosϑ1i
y3i = l3i sinϕ1i sinϑ1i
z3i = l3i cosϕ1i
x2i = x + l1i sinϕ1i cosϑ1i + l2i sinϕ2i cosϑ2i
y2i = l1i sinϕ1i sinϑ1i + l2i sinϕ2i sinϑ2i
z2i = l1i cosϕ1i + l2i cosϕ2i.

Using the Lagrange equations:

l
d
dt


∂E
∂ ẋ


−
∂E
∂x

+
∂V
∂x

= −cxẋ − kxx

d
dt


∂E
∂ϕ̇1i


−

∂E
∂ϕ1i

+
∂V
∂ϕ1i

= −cϕ1iϕ̇1i

d
dt


∂E
∂ϑ̇1i


−

∂E
∂ϑ1i

+
∂V
∂ϑ1i

= −cϑ1iϑ̇1i

d
dt


∂E
∂ϕ̇2i


−

∂E
∂ϕ2i

+
∂V
∂ϕ2i

= −cϕ2iϕ̇2i + MDi i = 1, . . . , 2
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Fig. 17. Coordinates describing the oscillations of the double pendulum.

d
dt


∂E
∂ϑ̇2i


−

∂E
∂ϑ2i

+
∂V
∂ϑ2i

= −cϑ1iϑ̇1i

one can derive the equations of motion in the following form

2
i=1


[m1i + m2i][l1iϕ̈1i cosϕ1i cosϑ1i − l1iϕ̇2

1i sinϕ1i cosϑ1i − 2l1iϕ̇1iϑ̇1i cosϕ1i sinϑ1i

− l1iϑ̈1i sinϕ1i sinϑ1i − l1iϑ̇2
1i sinϕ1i cosϑ1i]

+m3i[l3iϕ̈1i cosϕ1i cosϑ1i − l3iϕ̇2
1i sinϕ1i cosϑ1i − 2l3iϕ̇1iϑ̇1i cosϕ1i sinϑ1i

− l3iϑ̈1i sinϕ1i sinϑ1i − l3iϑ̇2
1i sinϕ1i cosϑ1i]

+m2i[l2iϕ̈2i cosϕ2i cosϑ2i − l2iϕ̇2
2i sinϕ2i cosϑ2i − 2l2iϕ̇2iϑ̇2i cosϕ2i sinϑ2i

− l2iϑ̈2i sinϕ2i sinϑ2i − l2iϑ̇2
2i sinϕ2i cosϑ2i]


+


M +

2
i=1

(m1i + m2i + m3i)


ẍ = −cxẋ − kxx (22)

[m1i + m2i][l21iϕ̈1i + ẍl1i cosϕ1i cosϑ1i − l21iϑ̇
2
1i sinϕ1i cosϕ1i]

+m3i[l23iϕ̈1i + ẍl3i cosϕ1i cosϑ1i − l23iϑ̇
2
1i sinϕ1i cosϕ1i]

+m2il1il2i[ϕ̈2i cosϕ1i cosϕ2i cos(ϑ2i − ϑ1i)− (ϑ̇1iϑ̇2i + ϕ̇2
2i) cosϕ1i sinϕ2i cos(ϑ2i − ϑ1i)

+ ϕ̇2i(ϑ̇1i − ϑ̇2i) cosϕ1i cosϕ2i sin(ϑ2i − ϑ1i)+ ϕ̈2i sinϕ1i sinϕ2i + ϕ̇2
2i sinϕ1i cosϕ2i]

+ [m1i + m2i]gl1i sinϕ1i + m3igl3i sinϕ1i = −cϕ1iϕ̇1i (23)

[m1i + m2i][l21iϑ̈1i sin2 ϕ1i + 2l21iϑ̇1iϕ̇1i sinϕ1i cosϕ1i − ẍl1i sinϕ1i sinϑ1i]

+m3i[l23iϑ̈1i sin2 ϕ1i + 2l23iϑ̇1iϕ̇1i sinϕ1i cosϕ1i − ẍl3i sinϕ1i sinϑ1i]

+m2il1il2i[ϑ̈2i sinϕ1i sinϕ2i cos(ϑ2i − ϑ1i)+ ϕ̇1iϑ̇2i cosϕ1i sinϕ2i cos(ϑ2i − ϑ1i)

+ ϕ̇2iϑ̇2i sinϕ1i cosϕ2i cos(ϑ2i − ϑ1i)+ ϑ̇2
2i sinϕ1i sinϕ2i sin(ϑ2i − ϑ1i)

− ϕ̇1iϕ̇2i cosϕ1i cosϕ2i sin(ϑ2i − ϑ1i)] = −cϑ1iϑ̇1i (24)
m2i[l22iϕ̈2i + ẍl2i cosϕ2i cosϑ2i − l22iϑ̇

2
2i sinϕ2i cosϕ2i]
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Fig. 18. The model of the system – two pendulum clocks are mounted to the beam which can move horizontally.

+m2il1il2i[ϕ̈1i cosϕ1i cosϕ2i cos(ϑ2i − ϑ1i)− (ϑ̇1iϑ̇2i + ϕ̇2
1i) cosϕ1i cosϕ2i cos(ϑ2i − ϑ1i)

+ ϕ̇1i(ϑ̇1i − ϑ̇2i) cosϕ1i cosϕ2i sin(ϑ2i − ϑ1i)+ ϕ̈1i sinϕ1i sinϕ2i + ϕ̇2
1i cosϕ1i sinϕ2i]

+m2igl2i sinϕ2i = −cϕ2iϕ̇2i + MDi (25)

m2i[l22iϑ̈2i sin2 ϕ2i + 2l22iϑ̇2iϕ̇2i sinϕ2i cosϕ2i − ẍl2i sinϕ2i sinϑ2i]

+m2il1il2i[ϑ̈1i sinϕ1i sinϕ2i cos(ϑ2i − ϑ1i)+ ϕ̇1iϑ̇1i cosϕ1i sinϕ2i cos(ϑ2i − ϑ1i)

+ ϕ̇2iϑ̇1i sinϕ1i cosϕ2i cos(ϑ2i − ϑ1i)+ ϑ̇2
1i sinϕ1i sinϕ2i sin(ϑ2i − ϑ1i)

+ ϕ̇1iϕ̇2i cosϕ1i cosϕ2i sin(ϑ2i − ϑ1i)] = −cϑ2iϑ̇2i (26)

where i = 1, 2.
Eqs. (22)–(25) represent the most general dynamical model of Huygens’ experiment. Our numerical studies show that

this model cannot be used in the explanation of the clocks’ synchronization for the reason that the spherical motion of the
clocks’ cases forced the spherical oscillations of the clock’s pendula and perturbs the action of the escapement mechanisms
(designed to work for the pendulum oscillations which are close to planar). Additionally the spherical motion of the clock’s
cases can be practically eliminated by the appropriate balancing of the case (possibly thiswas the reasonwhyHuygens added
additional weights to the clock’s cases — Fig. 2). Spherical motion has been also eliminated in our experiments described in
Section 4.1.

3.4. Three degrees of freedom discontinuous model

By clamping the clocks cases to the beam and allowing only planar oscillations of the lower pendula one can reduce
the model described in Section 3.3 to three degrees of freedom model shown in Fig. 18. It consists of the rigid beam and
two pendulum clocks suspended on it. The beam of mass M can move in a horizontal direction, its movement is described
by coordinate x. The mass of the beam is connected to the refuge of a linear spring and linear damper kx and cx. The clocks’
pendulum consists of the light beam of the length l andmassmounted at its end.We consider two cases (i) the pendula with
the same length l but different masses m1 and m2, and (ii) the pendula with the same mass and different length. The same
length of both pendula guarantees that the clocks are accurate, i.e., both show the same time. The motion of the pendula
is described by angles ϕ1 and ϕ2 and is damped by dampers (not shown in Fig. 18) with damping coefficients cϕ1 and cϕ2.
The pendula are driven by the escapement mechanism described in details in Section 2.2 [48,49,47,60,43,102]. Notice that
when the angular displacements of swinging pendula are less than certain angle γN , the escapement mechanisms generate
the constant moments MN1 and MN2. We consider two cases, i.e., (i) the damping coefficients cϕ1,2 and moments MN1,2 are
proportional to the pendula’ massesm1,2, (ii) the damping coefficients cϕ1,2 andmomentsMN1,2 are equal and independent
of pendula’ masses m1,2. The proportionality in (i) causes that in the lack of forcing (when the clock is not winded) the
oscillations of both pendula decay with the same speed. In both cases, when the beam is fixed, the pendula oscillate with
the same amplitude and the movement of the beammay change both the period and the amplitude of pendula oscillations.

This mechanism acts in two successive steps i.e., the first step is followed by the second one and the second one by the
first one. In the first step if 0 < ϕi < γN (i = 1, 2) thenMDi = MNi and when ϕi < 0 thenMDi = 0. For the second stage one
has for −γN < ϕi < 0 MDi = −MNi and for ϕi > 0 MDi = 0. The energy supplied by the escapement mechanic balance the
energy dissipated due to the damping. The parameters of this mechanics have been chosen in the way that for the beamM
at rest both pendula perform oscillations with the same amplitude. Typically the pendulum clocks oscillate with amplitude
smaller then 2π/36 and for clocks with long pendula like marine clocks this amplitude is even smaller [48].

The equations of motion are as follow:

mil2i ϕ̈i + miẍli cosϕi + cϕiϕ̇i + migli sinϕi = MDi, (27)
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M +

2
i=1

mi


ẍ + cxẋ + kxx +

2
i=1

mili

ϕ̈i cosϕi − ϕ̇2

i sinϕi


= 0, (28)

i = 1, 2. Notice that Eqs. (27) and (28) can be derived from Eqs. (22)–(26) by setting l1i = 0, l3i = 0, x1i = x, y1i = 0, z1i =

0, x3i = x, y3i = 0, z3i = 0, x2i = x + l2i sinϕ2i, y2i = 0, z2i = l2i cosϕ2i and allowing lower pendula to oscillate in x–z
plane. Eqs. (27) and (28) describe the dynamical system which performs the self-excited oscillations [50].

The clocks are designed in such a way that the pendula perform periodic motion with a period 2π/α where α is
constant. The escapement mechanism provides the necessary amount of energy to compensate the dissipation and makes
the pendulum motion periodic. Under these assumptions in the state of phase or antiphase synchronization the motion of
the clock’s pendula has be approximated by:

ϕi = Φi sin (αt + βi) , (29)

and

ϕ̇i = αΦi cos (αt + βi) ,

ϕ̈i = −α2Φi sin (αt + βi) ,
(30)

whereΦi are constant amplitudes of pendula’s oscillations.
Our numerical simulations (e.g. Fig. 12) show that the continuous solution given by Eq. (29) is a good approximation of

the pendula’ oscillations calculated fromdiscontinuous equations (27) and (28) in the case of both identical and nonidentical
clocks. Substituting Eqs. (29) and (30) into Eq. (28) and assuming that the pendula have the same length (l1 = l2 = l) one
gets: 

M +

2
i=1

mi


ẍ + cxẋ + kxx =

2
i=1


milα2Φi sin(αt + βi)+ milα2Φ3

i cos2(αt + βi) sin(αt + βi)

. (31)

Considering cos2 α sinα = 0.25 sinα + 0.75 sin 3α, and denoting

U = M +

2
i=1

mi, F1i = milα2(Φi + 0.25Φ3
i ), F3i = 0.75milα2Φ3

i , (32)

we have

Uẍ + cxẋ + kxx =

2
i=1

(F1i sin(αt + βi)+ F3i sin(3αt + 3βi)) . (33)

Assuming the small value of the damping coefficient cx the solution of Eq. (33) can be rewritten in the following form

x =

2
i=1

(X1i sin(αt + βi)+ X3i sin(3αt + 3βi)) , (34)

where

X1i =
F1i

kx − α2U
=

milα2(Φi + 0.25Φ3
i )

kx − α2U
,

X3i =
F3i

kx − 9α2U
=

0.25milα2Φ3
i

kx − 9α2U
.

(35)

Eq. (34) implies the following acceleration of the beamM:

ẍ =

2
i=1

(A1i sin(αt + βi)+ A3i sin(3αt + 3βi)) , (36)

where

A1i = −
milα4(Φi + 0.25Φ3

i )

kx − α2U
,

A3i = −
0.25milα4Φ3

i

kx − 9α2U
.

(37)

Notice that Eq. (36) consists of the first and third harmonic components only.
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3.4.1. Energy balance of the clocks’ pendula
Multiplication of both sides of Eq. (27) by the angular velocity of the i-th pendulum gives:

mil2ϕ̈iϕ̇i + miglϕ̇i sinϕi = MDiϕ̇i − cϕiϕ̇2
i − miẍl cosϕiϕ̇i. (38)

In the case of the periodic motion of the pendula after integration equation (38) gives the energy balance of the i-th
pendulum: T

0
mil2ϕ̈iϕ̇idt +

 T

0
miglϕ̇i sinϕidt =

 T

0
MDiϕ̇idt −

 T

0
cϕiϕ̇2

i dt −

 T

0
miẍl cosϕiϕ̇idt. (39)

Left hand side of Eq. (39) represents the decrease of the total energy of the i-th pendulum. In the case of the periodic behavior
of system (27) and (28) this decrease is equal to zero, so T

0
mil2ϕ̈iϕ̇idt +

 T

0
miglϕ̇i sinϕidt = 0. (40)

The work done by the escapement mechanism during tone period of pendulum’s oscillations can be expressed as

WDRIVE
i =

 T

0
MDiϕ̇idt = 2

 γN

0
MNidϕi = 2MNiγN . (41)

We assume that the amplitudes of the pendula ϕ1,2 are larger than γN . In such a case WDRIVE does not on the pendula’s
displacement ϕ1, 2 and velocity ϕ̇i. The energy dissipated in the damper is given by

WDAMP
i =

 T

0
cϕiϕ̇2

i dt =

 T

0
cϕiα2Φ2

i cos2(αt + βi)dt = παcϕiΦ2
i . (42)

(In the integration of Eq. (42) the relation
 T
0 cosαt cosαtdt = 0.5T =

π
α
has been used).

The last component of Eq. (39) represents the energy transferred from the i-th pendulum to the beamM (the pendulum
looses part of its energy to force the beam to oscillate), so we have:

W SYN
i =

 T

0
miẍl cosϕiϕ̇idt. (43)

Substituting Eqs. (41)–(43) into Eq. (39) one obtains energy balance for the i-th pendulum.

WDRIVE
1 = WDAMP

1 + W SYN
1 , (44)

WDRIVE
2 = WDAMP

2 + W SYN
2 .

Notice that the energiesW SYN
1,2 are responsible for the clocks’ synchronization.

3.4.2. Energy balance of the beam and whole system (26) and (27)
Multiplying equation of the beam motion (28) by beam velocity ẋ one gets:

M +

2
i=1

mi


ẍẋ + cxẋ2 + kxxẋ +


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋ = 0. (45)

Integrating Eq. (45) over the period of oscillations we obtain the following energy balance: T

0


M +

2
i=1

mi


ẍẋdt +

 T

0
kxxẋdt = −

 T

0


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋdt −

 T

0
cxẋ2dt. (46)

Left hand side of Eq. (46) represents the increase of the total energy of the beam which for the periodic oscillations is equal
to zero: T

0


M +

2
i=1

mi


ẍẋdt +

 T

0
kxxẋdt = 0. (47)

The first component on the right-hand side of Eq. (46) represents the work performed by the horizontal component of the
force with which the pendula act on the beam causing its motion:

WDRIVE
beam = −

 T

0


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋdt. (48)
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The second component on the right hand side of Eq. (46) represents the energy dissipated by the damper cx:

WDAMP
beam =

 T

0
cxẋ2dt. (49)

Substituting Eqs. (47)–(49) into Eq. (46) one gets the energy balance in the following form

WDRIVE
beam = WDAMP

beam . (50)

In the case of the periodic oscillations it is possible to prove that

W SYN
1 + W SYN

2 = WDRIVE
beam . (51)

Assuming WDRIVE
1 = WDRIVE

2 and adding Eqs. (44) and (50)

2WDRIVE
+ WDRIVE

beam = WDAMP
1 + WDAMP

2 + W SYN
1 + W SYN

2 + WDAMP
beam ,

or after considering Eq. (51) one obtains

2WDRIVE
= WDAMP

1 + WDAMP
2 + WDAMP

beam . (52)

Eq. (52) represents the energy balance of the whole system (27) and (28).
Now let us consider the properties of Eq. (44) in a few special cases of the pendula synchronization.

(i) Energy balance during the anti-phase synchronization (identical pendula)
In the case of the antiphase synchronization of two identical pendula the beam M is in rest [42,43]. There is no energy

transfer between pendula and the beam so Eq. (44) has the form

WDRIVE
i = WDAMP

i , (53)

(i = 1, 2). This balance for two clocks’ pendula will be numerically illustrated in Section 4.2 (Fig. 25). Substituting Eqs. (41)
and (42) into Eq. (53) one gets

2MNiγN = παcϕiΦ2
i (54)

(i = 1, 2) so one gets the expression

Φi =


2MNiγN

παcϕi
. (55)

(i = 1, 2) for the amplitude of the pendulum’s oscillations.
(ii) Energy balance during the phase synchronization (pendula with different masses)

In the case of two nonidentical clocks (with different pendula masses) mounted to the beam M one can observe phase
synchronization of the pendula. The beam performs horizontal oscillations and the energy W SYN

i is not equal to zero.
Substituting pendulum’s velocity Eq. (30), beam’s acceleration Eq. (36) into Eq. (43) and taking into account the simplification
cosϕi = 1.0, one gets the expression for the energy transferred from i-th pendulum to the beam:

W SYN
i =

 T

0
(milẍ cosϕi)ϕ̇idt =

 T

0
mil


2

j=1


A1j sin(αt + βj)+ A3j sin(3αt + 3βj)


αΦi cos(αt + βi)dt. (56)

After further calculations one gets:

W SYN
i = milαΦi

2
j=1

A1j
π

α


− cosβj sinβi + sinβj cosβi


= milαΦi

2
j=1

Aj
π

α
sin(βj − βi) (57)

and after substitution of Eq. (37):

W SYN
i =

−mil2α4πΦi

kx − α2U

2
j=1

mj(Φj + 0.25Φ3
j ) sin(βj − βi). (58)

Setting β1 = 0.0 (one of the phase angles can be arbitrarily chosen) and taking into consideration the following
simplificationΦi + 0.25Φ3

i ≈ Φi, Eq. (58) can be rewritten as:

W SYN
1 = −

m1l2α4πΦ1

kx − α2U
m2Φ2 sinβ2 = W SYN ,

W SYN
2 =

m2l2α4πΦ2

kx − α2U
m1Φ1 sinβ2 = −W SYN .

(59)
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Eq. (59) show that both synchronization energies are equal and so the energy balance of both pendula (Eq. (44)) can be
written as

WDRIVE
1 = WDAMP

1 + W SYN

WDRIVE
2 + W SYN

2 = WDAMP
2 .

(60)

Substituting Eqs. Eqs. (41) and (42), (59) into Eq. (60) one gets:

2MN1γN = παcϕ1Φ2
1 −

m1l2α4πΦ1

kx − α2U
m2Φ2 sinβ2,

2MN2γN = παcϕ2Φ2
2 +

m2l2α4πΦ2

kx − α2U
m1Φ1 sinβ2,

(61)

so

sinβ2 =
2MN2γN − παcϕ2Φ2

2
m2 l2α4πΦ2
kx−α2U

m1Φ1

. (62)

Eqs. (61) and (62) give relation between the pendula’s amplitudes Φ1 and Φ2 and the phase angle β2. Note, that Eq. (62)
does not allow calculations ofΦ1,Φ2 and β2 but show that numerically calculated values fill this relation.

(iii) Energy dissipated by the cx-damper
Energy dissipated by the cx-damper during the period of system oscillations is given by

WDAMP
b =

 T

0
cxẋ2dt. (63)

Assuming the harmonic oscillations of the beamM which are characterized by the amplitude X, i.e.:

x = X sin(αt + ψ), ẋ = αX cos(αt + ψ), (64)

whereψ is a phase angle which determines the phase shift of the beammotion in respect of the first pendulum (with phase
angle β1). Comparing Eqs. (34) and (64), assuming β1 = 0 and taking into consideration only the first harmonic one gets the
following formula

ϑ = arctan


X12

X11 + X12 cosβ2


.

Substituting Eq. (64) into Eq. (63) one gets

WDAMP
b =

 T

0
cxẋ2dt = cxαπX2. (65)

(iv) The case of the small damping of the pendula
Let us consider the particular case when the damping of the pendula is small, i.e., cϕi are small, and such is the moment

generated by the escapement mechanism. We have

WDRIVE
1

W SYN
≈ 0.0,

WDRIVE
2

W SYN
≈ 0.0,

WDAMP
1

W SYN
≈ 0.0,

WDAMP
1

W SYN
≈ 0.0. (66)

Taking into consideration Eqs. (61) and (66), Eq. (59) has the form

W SYN
1 =

−m1l2α4πΦ1

kx − α2U
m2Φ2 sinβ2 = 0.0,

W SYN
2 =

m2l2α4πΦ2

kx − α2U
m1Φ1 sinβ2 = 0.0.

(67)

Eq. (67) are fulfilled in two cases; (i) β2 = 0.0°, so as β1 = 0.0° indicates the state of complete synchronization, the pendula
behave exactly in the same way and there is no transfer of energy between them, (ii) β2 = 180.0°, so as β1 = 0.0° indicates
the state of antiphase synchronization.
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3.5. Three degrees of freedom model with van der Pol’s friction

The continuous model of two coupled clocks can be derived from the one described in Section 3.4 when instead of the
clocks with pendula driven by discontinuous escapement mechanism, one considers two self-excited pendula with van der
Pol type of damping. Themathematical description of such pendula contains the self-excited component cϕvdpϕ̇ and energy-
dissipating component cϕvdpζ ϕ̇ϕ2. The balance of these components results in the creation of a stable limit cycle.

The equations of motion of the (cϕvdp < 0) considered system are as follows:

m1l2ϕ̈1 + m1ẍl cosϕ1 + cϕvdpϕ̇1(1 − ζϕ2
1)+ m1gl sinϕ1 = 0

m2l2ϕ̈2 + m2ẍl cosϕ2 + cϕvdpϕ̇2(1 − ζϕ2
2)+ m2gl sinϕ2 = 0

(68)
M +

2
i=1

mi


ẍ + cxẋ + kxx +

2
i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


= 0. (69)

Eqs. (68) and (69) contrary to the Eqs. (27) and (28) are continuous.
The energy balance of the continuous model (68) and (69) can be analyzed as follows. Multiplying both sides of Eqs. (68)

by angular velocity ϕi one gets:

mil2ϕ̈iϕ̇i + miglϕ̇i sinϕi = −cϕvdpϕ̇2
i + cϕvdpζ ϕ̇2

i ϕ
2
i − miẍl cosϕiϕ̇i, i = 1, 2. (70)

In the case of the periodic oscillations with period T integration of Eq. (69) gives the following energy balance: T

0
mil2ϕ̈iϕ̇idt +

 T

0
miglϕ̇i sinϕidt = −

 T

0
cϕvdpϕ̇2

i dt +

 T

0
cϕvdpζ ϕ̇2

i ϕ
2
i dt −

 T

0
miẍl cosϕiϕ̇idt, (71)

where i = 1, 2. Left hand side of Eq. (71) represents the increase of the total energy of i-th pendulum which in the case of
periodic oscillations is equal to zero: T

0
mil2ϕ̈iϕ̇idt +

 T

0
miglϕ̇i sinϕidt = 0, i = 1, 2. (72)

The energy supplied to the system by the van-der-Pol’s damper in one period of oscillations is given by

W SELF
i = −

 T

0
cϕvdpϕ̇2

i dt, i = 1, 2. (73)

The next component on the right hand side of Eq. (71) represents the energy dissipated by the van-der-Pol’s damper:

W VDP
i = −

 T

0
cϕvdpζϕ2ϕ̇2

i dt, i = 1, 2. (74)

The last component of Eq. (71) represents the energy transfer from the pendulum to the beam or to the second pendulum
(via beam):

W SYN
i =

 T

0
miẍl cosϕiϕ̇idt, i = 1, 2. (75)

Substituting Eqs. (72)–(75) into Eq. (71) one gets pendula’s energy balances in the form

W SELF
1 − W VDP

1 − W SYN
1 = 0,

W SELF
2 − W VDP

2 − W SYN
2 = 0.

(76)

Multiplying the equation of the beam motion (69) by beam velocity ẋ one gets:
M +

2
i=1

mi


ẍẋ + cxẋ2 + kxxẋ +


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋ = 0. (77)

Integrating Eq. (77) over the period of oscillations we obtain the following energy balance: T

0


M +

2
i=1

mi


ẍẋdt +

 T

0
kxxẋdt = −

 T

0


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋdt −

 T

0
cxẋ2dt. (78)

Left hand side of Eq. (79) represents the increase of the total energy of the beam which for the periodic oscillations is equal
to zero: T

0


M +

2
i=1

mi


ẍẋdt +

 T

0
kxxẋdt = 0. (79)
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Fig. 19. Two clocks suspended on the beam which can perform transversal oscillations (after [35]).

The first component on the right-hand side of Eq. (78) represents the work performed by the horizontal component of the
force with which pendula act on the beam causing its motion:

WDRIVE
beam = −

 T

0


2

i=1

mil

ϕ̈i cosϕi − ϕ̇2

i sinϕi


ẋdt. (80)

The second component on the right hand side of Eq. (78) represents the energy dissipated by the damper cx:

WDAMP
beam =

 T

0
cxẋ2dt. (81)

Substituting Eqs. (79) and (81) into Eq. (78) one gets energy balance in the following form

WDRIVE
beam − WDAMP

beam = 0. (82)

In the case of the periodic oscillations it is possible to prove that

W SYN
1 + W SYN

2 = WDRIVE
beam = WDAMP

beam (83)

so adding Eqs. (76) and (82) and considering Eq. (83) one obtains

W SELF
1 + W SELF

2 − W VDP
1 − W VDP

2 − WDAMP
beam = 0. (84)

Eq. (84) represents the energy balance of the whole system (68) and (69).

3.6. Model with the transversal oscillations of the beam

The models described in Sections 3.2–3.5 do not consider the transversal displacements of the beam as these
displacements are very small and the observed phenomena of the clocks’ synchronization occur far below the resonances
for transversal oscillations of the typical wooden beam. The model with a low stiffness beam (string) has been considered
in [35]. The clocks are suspended symmetrically about the middle of the beam as shown in Fig. 19. The beam deflection
is described by the vertical displacement x of one of the suspension points for a specified symmetric deflection function.
The positions of the pendula are determined by the angles ϕi (i = 1, 2) counted from the vertical axes xi in the opposite
directions and assumed to be small. It has been assumed that the pendula masses m are identical, but the lengths li are
similar but still different.

The kinetic energy of the system

T =
1
2
Mẋ2 +

1
2
m

2
i=1

(ẋ2 − 2lisin (ϕiẋϕ̇i)+ l2i ϕ̇
2
i ),

where M is the effective mass of the beam with the virtual masses of clock mechanisms and cases (without pendula). The
potential energy of the system is

V =
1
2
Mω2

beamx
2
− mg

2
i=1

licosϕi ,

where ωbeam is the frequency of free oscillations of the beam with virtual masses without pendula and g is the acceleration
of gravity. The equations of motion have the form

(M + 2m) ẍ − m
2

i=1

li(ϕiϕ̈i + ϕ̇2
i ) = − Mω2

beamx + Qx (85)

ml2i ϕ̈i − mliϕiẍ = −mgliϕi + Qi,
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where i = 1, 2. Qx is the linear-friction force in the beam and Qi are the van der Pol nonlinear-friction forces. Wewrite these
generalized forces as

Qx

M + 2m
= −ε0 ẋ,

Qi

lim
= εi


1 −

S2i
S20


Ṡi,

where ε0 and εi are the friction coefficients, Si = liϕi, and S0 are the deflections of the pendula at which the damping changes
its sign.

Eq. (85) can be rewritten as

x′′
+ 2

ε0

ω
x′

+ 4
ω2

0

ω2
x = µ


(y21)

′′
+

y22
′′

, (86)

y′′

i +


ai −

x′′

li


yi = δ


1 − y2i


y′

i,

where
M

M + 2m
ω2

beam = ω2
0,

mS20
2l1(M + 2m)

≈
mS20

2l2(M + 2m)
= µ,

S1/S2 = y1, ai = 4ω2
i /ω

2, g/li = ω2
i , 2ε1S

2
0/ωl1 ≈ 2ε2S20/ωl2 = δ. In Eqs. (86), the prime denotes differentiation with

respect to the nondimensional time z = ωt/2 (ω is the unknown frequency of beam oscillations). We set l1 ≈ l2 in the
coefficients of small nonlinear terms and in the coefficients of the van der Pol damping.

In [35] Eq. (86) have been studied using the approximate analytical method of harmonic balance. It has been shown
that the exact antiphase synchronization of nonidentical pendula cannot occur but slightly different pendula can perform
synchronous motion close to antiphase oscillations.

4. Synchronization of two pendulum clocks

4.1. Experimental observations

For our experiments we take two contemporary pendulum clocks (type: SN-13, produced in 2003 in the Factory of Clocks
in Torun, Poland) which are shown in Fig. 20(a)–(d). These clocks have typical escapement mechanisms described in [43,48]
and the pendula of the length 0.269 (m) and mass 0.158 (kg). The total mass of the clock is equal to 5.361 (kg). The clocks
are covered in the wooden case. The clocks in experiment have been selected in such a way to be as identical as possible
but we noticed a small time difference of 1 (s) after 24 h. When the clocks have been hung on the wall as in Fig. 20(a) no
synchronization has been observed.

Next the clocks have been hung on the wooden beam (length – 1.13 (m), mass – 1.45 (kg)) and located on two chairs
as in the original Huygens experiment in Fig. 1. Our setup is shown in Fig. 20(b). In this case we have not observed clocks
synchronizations but we noticed the frequent switch off of one of the clocks (the amplitude death of its pendulum). This
effect occurs due to the spherical motion of the clocks’ cases and subsequently their pendula. The spherical motion of the
pendula (with too large amplitudes) switches off the escapementmechanismwhich is designed for the planarmotion of the
pendulum. To reduce the amplitudes of the spherical oscillations we balanced the clocks by adding additional masses into
their cases but we have not observed the synchronization.

Later two chairs have been replaced by the tables with a flat horizontal desks. On the desk we put some oil to reduce
the friction and allow beam sliding on the table desks but the synchronizations has not been observed (Fig. 20(c)). Finally,
the synchronization has been observed in the setup shown in Fig. 20(d) the beam with a hanging clock has been located
on the rolls which can roll on the table desks. We have been trying to reduce the friction by polishing the surfaces of the
beam, table desks and rolls. Depending on initial conditions it has been possible to observe both in-phase and anti-phase
synchronization of the clock’s pendula.

Similar results have been obtained in the experiments performed at the ‘‘Mekhanobr’’ Institute in Sankt Petersburg [8]
and at Georgia Institute of Technology in Atlanta [33]. Blekhman [8] reports the results of a laboratory reproduction of the
coupled clocks inwhich he observes both in-phase and antiphase synchronization. He also states that these results are in full
agreement with the theoretical study base on continuous model (Eqs. (68) and (69) in Section 3.5) in which he predicts that
both in-phase and antiphasemotions are stable under the same circumstances (i.e., the systemhas two coexisting attractors).
However no details of this experiments are available. Experiments of [33] are well documented. They re-examine Huygens’s
synchronization observations in an experiment with two pendulum clocks mounted side by side on a single wooden beam.
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Fig. 20. Experiments with two pendulum clocks: (a) clocks hanging on the wall, (b) clocks hanging from the beam located on the chairs’ backs, (c) clocks
hanging from the beam which can slide on the tables’ desks, (d) clocks hanging from the beam which can roll horizontally on the tables’ desks.

The commercially available pendulum clocks (spring-wound time pieces - Model 771-000, Uhrenfabrik Franz Hermle &
Sohn, Gosheim, Germany) have been used. Each clock contains a 14.0 cm pendulum (with a nominal frequency of 1.33 (Hz))
ofmassm = 0 : 082 (kg); the pendulum is coupled to an anchor escapement, which enables the clockmovement to function
with small angular displacements of approximately 8° from vertical. The beam is mounted on a low-friction wheeled cart
(Model ME-9454, Pasco Scientific, Roseville, CA). The combined system of clocks, beam and cart is placed atop a slotted
track (ME-9429A, Pasco Scientific), which permits the system to translate freely in a direction parallel to the beam. The total
mass of the cart and clocks without the pendulums is M. Weights are added to and removed from the cart to change M
and, thereby, to change the system mass ratio µ = m/(2m + M). The motion of each pendulum is monitored by tracking a
laser beam reflected from the pendulum suspension using a position-sensing detector (Model 1L30, On-Trak Photonics,
Lake Forest, CA). The lasers and detectors are mounted on the system, permitting measurement of each pendulum’s
angular position in the system reference frame. The voltage signal from each detector is recorded using a computer-based
data-acquisition system; complex demodulation of the signals yields measurement of each pendulum’s oscillation
amplitude, frequency and phase as a function of time. The clocks synchronize in anti-phase for some values of the system
mass ratioµ (comparable with that reported by Huygens). Simultaneously the beating oscillations leading to the amplitude
death have been observed.

4.2. Numerical results

In our numerical simulations Eqs. (27) and (28) or (68) and (69) have been integrated by the Runge–Kutta method. The
initial conditions have been set as follows; (i) for the beam x(0) = ẋ(0) = 0, (ii) for the pendula the initial conditions
ϕi(0), ϕ̇i(0) have been calculated from the assumed initial phase differences β1 and β2 (in all calculations β1 = 0 has been
taken) using Eqs. (29) and (30), i.e., ϕ1(0) = 0, ϕ̇1(0) = αΦ, ϕ2(0) = Φ sinβ2, ϕ̇2(0) = αΦ cosβ2.

To study the stability of the solution of Eqs. (27) and (28) we add perturbations δi and σ to the variables ϕi and x and
obtain the following linearized variational equation:

mil2i δ̈i + miσ̈ li cosϕi + mili(g cosϕi − ẍ sinϕi)+ cϕiδ̇i = 0, (87)

(M + m1 + m2)σ̈ +

2
i=1


miliδ̈2i cosϕi − miliϕ̇2

i δi cosϕi − miliϕ̈iδi sinϕi − 2miliϕ̇iδ̇i sinϕi

+ cxσ̇ + kxσ = 0,

where i = 1, 2. The solution of Eqs. (27) and (28) given by ϕi(t) and x(t) is stable while the solution of Eqs. (87) δi(t) and
σ(t) tends to zero for t → ∞.
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Fig. 21. (Color online) Synchronization of two identical pendulum clocks’: m1 = m2 = 1.0 (kg), l = g/4π2
= 0.2485 (m), M = 10.0 (kg),

cϕ1 = cϕ2 = 0.0083 (N s m), cx = 1.53 (N s/m), kx = 4.0 (N/m), γN = 5.0°, MN1 = MN2 = 0.075 (N m); (a, b) time series of pendula ϕ1, ϕ2 and beam
x displacements, time on the horizontal axis is given in the following way t = NT , where N = 1, 2, 3, . . . and T = 1 (s), (a) complete synchronization
(ϕ1 = ϕ2) pendula are in the antiphase to the oscillations of the beam M , (b) antiphase synchronization (ϕ1 = −ϕ2), beam M is at rest, (c) basins of
attraction of complete synchronization (white color) and antiphase synchronization (gray/blue online color) in β10 − β20 plane, x(0) = 0.0, ẋ(0) = 0.0,
ϕi0 = Φ sinβi0, ϕ̇i0 = αΦ cosβi0 .

4.2.1. Synchronization of two identical pendula
Depending on initial conditions one can observe two different types of synchronization in the considered system. Two

pendula with identical masses and periods of oscillations can obtain the state of complete synchronization when (ϕ1 = ϕ2)
and beamM oscillates in antiphase to the pendula or the state of antiphase synchronization when (ϕ1 = −ϕ2) and beamM
is at rest [33,8,45].

Both types of synchronization are shown in Fig. 21(a)–(c). In our numerical simulations we consider the following
parameter values: pendula’ masses - m1 = m2 = 1.0 (kg), the length of the pendula l = g/4π2

= 0.2485 (m) (it has been
selected in such a way that when the beam M is at rest the period of the pendulum oscillations is equal to T = 1.0 (s) and
oscillations frequency to α = 2π (s − 1)), g = 9.81 (m/s2) is an acceleration due to the gravity, beammassM = 10.0 (kg),
damping coefficients cϕ1 = cϕ2 = 0.0083 (N s m) and cx = 1.53 (N s/m) and stiffness coefficient kx = 4.0 (N/m). When
the displacements of the pendula are smaller than γN = 5.0° the escapement mechanisms generate driving moments
MN1 = MN2 = 0.075 (N m) and allow the pendula to oscillate with amplitude Φ1 = Φ2 = Φ = 0.2575 (≈14.75°) while
beam M is at rest.

Fig. 21(a) presents the complete synchronization of the pendula of both clocks, i.e., the pendula’ displacements (which
are the same ϕ1 = ϕ2) and the displacements of the beam x (shown in 10 times magnification). The time series are shown
in the stationary state after the decay of transients. Time on the horizontal axis is given in the following way t = NT , where
N = 1, 2, 3, . . . and T is a period of pendulum’s oscillations when the beam is at rest. Notice that the numerically estimated
value of the amplitudeΦ1,2 = 0.283 is approximately equal to the value which can be calculated from Eq. (55). In Fig. 21(b)
we present the example of antiphase synchronization, i.e., ϕ1(t) = ϕ2(t + 0.5T ) (or ϕ1(t) = −ϕ2(t)) and the beam M is
at rest as x = 0.0. Both types of synchronization have been obtained for the same parameter values but different initial
conditions. Fig. 21(c) shows the basins of attraction of both types of synchronization in (β10, β20) plane. White and gray
(blue online) colors indicate initial conditions leading respectively to complete and antiphase synchronization. In the case
of complete synchronization both clocks are significantly faster (nearly 6 min per hour— Fig. 21(a)) in reference to the clock
mounted to the nonmoving base. This difference occurs as the result of the pendula’ motion in the antiphase to the beam.
In the case of antiphase synchronization (Fig. 21(b)) the clocks remain accurate.
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Fig. 22. (Color online) Synchronization of two pendula with different masses: m1 = 1.0 (kg), l = g/4π2
= 0.2485 (m), M = 10.0 (kg), cx = 1.53

(N s/m), kx = 4.0 (N/m), γN = 5.0°, cϕ1 = 0.0083 (N s), cϕ2 = 0.0083 × m2 (N s m), MN1 = 0.075 (N m), MN2 = 0.075 × m2 (N m); (a, b) time series of
pendula ϕ1, ϕ2 and beam x displacements, time on the horizontal axis is given in the following way t = NT , where N = 1, 2, 3, . . . and T = 1 (s), (a) phase
synchronization: m2 = 2.65 (kg), β10 = 10°, β20 = 130°; (b) long period synchronization: m2 = 2.65 (kg), Tm ≈ 7T , β10 = 1°, β20 = 90°; (c) basins
of attraction of different types of synchronization: complete synchronization (white), phase synchronization (light gray, blue color online), long period
synchronization (dark gray, red color online) in β10 − β20 plane: x(0) = 0.0, ẋ(0) = 0.0, ϕi0 = Φ sinβi0, ϕ̇i0 = αΦ cosβi0,m2 = 2.65 (kg), (d) basins
of attraction of different types of synchronization: complete synchronization (white), long period synchronization (dark gray, red color online) chaotic
behavior (black) in β10 − β20 plane: x(0) = 0.0, ẋ(0) = 0.0, ϕi0 = Φ sinβi0, ϕ̇i0 = αΦ cosβi0,m2 = 3.105 (kg).

4.2.2. Synchronization of two pendula with different masses
(i) Damping coefficients cϕ1,2 and moments MNi proportional to the pendula masses m1,2

When the clocks have the pendula with different masses (m1 ≠ m2), the considered system shows three different types
of synchronous behavior. The first one is the complete synchronization (ϕ1 = ϕ2) already observed in the case of identical
systems in Section 4.2.1. The second one is the phase synchronization which evolves from the anti-phase synchronization
of the identical systems. For nonidentical masses of the pendula the phase difference between pendula decreases and is
smaller than π (180°) and contrary to the case of identical clocks the beamM is not at rest and pendula’ amplitudes are not
equal.

Different types of synchronization states and their basins of attraction are presented in Fig. 22(a)–(d). In our numerical
simulations we consider the following parameter values: l = g/4π2

= 0.2485 (m), M = 10.0 (kg), cx = 1.53 (N s/m),
kx = 4.0 (N/m), m1 = 1.0 (kg), m2 = 2.65 (kg), γN = 5.0°, cϕ1 = 0.0083 (N m s), cϕ2 = 0.0083 × m2 (N m s),
MN1 = 0.075 (N m), MN2 = 0.075 × m2 (N m). Fig. 22(a) presents the phase synchronization in which the pendula’
displacements ϕ1 and ϕ2 are shifted by the angle close to π but smaller than this value. Similarly, the oscillations of the
beam x are phase shifted to the pendula’ oscillations by the value close but not equal to π/2. The first pendulum (with
smaller massm1) exhibits the oscillations with the larger amplitude (than in the case when beamM is at rest). The analysis
of Section 3.4.2 explains this phenomenon showing that this pendulum is driven by the second pendulum via beam M
(the part of pendulum 2 energy is transferred to pendulum 1). As the result the amplitude of the second pendulum’s
oscillations is larger (than in the case when beamM is at rest).

In the considered system besides the complete and phase synchronization one can observe the synchronization state in
which ϕ1 − ϕ2 is a periodic function. As the period of this function Tm is larger than T (the period of pendula’ oscillations
in the case when beam M is at rest) this type of generalized synchronization is called a long period synchronization. The
long period synchronization can be a special case of n : m synchronization observed in the self-excited continuous systems
[103,50]. Since the system (27) and (28) is discontinuous andwe have not proved the existence of the quasiperiodic solution
on the torus in it we decide to use other name. Fig. 22(b) presents the example of this type of synchronization obtained for
the initial conditions β10 = 1.0° and β20 = 90.0°. One can observe that Tm is equal to 7T . Long period synchronization can
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be explained by the periodic decrease of the amplitudeΦ1 of pendulum 1 oscillations. When this amplitude is smaller than
the minimum value Φ1 = γN the escapement mechanism is switched off. These switches off introduce the perturbation
to the system. The basins of attraction of three coexisting attractors are shown in Fig. 22(c) in β10 − β20 plane. White and
light gray (blue online) colors indicate initial conditions leading respectively to complete and phase synchronization while
the region shown in dark gray (red online) color indicates initial conditions leading to long period synchronization. Our
calculations show, that the dark gray basin of long period synchronization appears at m2 ≈ 2.4 (kg). With the increase of
m2 the basin of phase synchronization becomes smaller and finally disappears for m2 ≈ 2.8 (kg). In the considered system
one can observe long period synchronization states with different Tm (the largest observed Tm is equal to 51T ). Long period
synchronization can coexist with the chaotic behavior of the clocks’ pendula (see also Section 4.2.4). The example of such
coexistence is shown in Fig. 22(d) (m2 = 3.105 (kg)) where the basins of complete (white color), long periodwith Tm = 13T
(dark gray, red online) synchronization and chaotic behavior (black color) are shown.

In the case of phase synchronization both clocks are slightly slower (nearly 20 (s) per hour –Fig. 22(a)) in reference to
the clock mounted to the nonmoving base. The same difference occurs in the case of long period synchronization (25 (s) per
hour –Fig. 22(b)).

In Fig. 23(a)–(c) we present the bifurcation diagram of the system (27) and (28). The mass of pendulum 2 − m2 has
been taken as a control parameter. On the vertical axis the displacements of the pendula ϕ1, ϕ2, the beam displacement
x (for better visibility x has been multiplied by 10); values ϕ2 and x have been taken at the time of the greatest positive
displacement of the first pendulum ϕ1, i.e., when ϕ̇1 changes the sign from positive to negative values. In Fig. 23(a) and
31(b) the bifurcation diagrams for respectively increasing and decreasing values of m2 are shown. In Fig. 23(a) we start
from the antiphase synchronization of identical systems (i.e.,m2 = 1.0 (kg)). The antiphase synchronization is replaced by
the phase synchronization (PS) with decreasing phase shift which can be observed in the interval 1.0 < m2 < 12.3 (kg).
For larger values of m2 one observes long period synchronization (LPS) and chaotic oscillations (C) of the clocks’ pendula
(12.3 < m2 < 15.25 (kg)). This behavior is replaced by complete synchronization for m2 > 15.25 (kg). Fig. 23(b) shows
that starting from the complete synchronization (CS) for m2 = 26 (kg) and decreasing the values of m2 we observe this
type of synchronization in the whole interval 1.0 < m2 < 26.0 (kg). In Fig. 23(c) we start from the chaotic oscillations for
m2 = 15.0 (kg) and decrease the value of the control parameter m2. Chaotic oscillations with the windows of long period
synchronization are preserved in the interval 2.9 < m2 < 15.0 (kg) and for smaller values of m2 are replaced by complete
synchronization.

Fig. 23(a)–(c) confirms the coexistence of different types of synchronous behavior. For 1.0 < m2 < 2.9 (kg) complete
and phase synchronizations coexist. In the interval 2.9 < m2 < 12.3 (kg) we observe complete, phase and long period
synchronization (with different n). For larger values of m2 (12.3 < m2 < 15.25 (kg)) phase synchronization disappears
and we observe complete and long period synchronization. Finally, for m2 > 15.25 only the complete synchronization is
possible.

The system behavior for m2 smaller than m1 is discussed in Fig. 24(a, b). Bifurcation diagram is presented in Fig. 24(a)
where we start from the phase synchronization for m2 = 1.0 (kg) and decrease the value of control parameter up to
m2 = 0.1 (kg). Phase synchronization is preserved in the interval 1.0 > m2 > 0.285 (kg) (it coexists with complete
synchronization). For smaller values of m2 we observe only the complete synchronization. The disappearance of the phase
synchronization is explained in Fig. 24(b) where we present the time series of the pendula displacements ϕ1 and ϕ2 for
m2 = 0.285 (kg) (close to the threshold value). Notice that the amplitude of pendulum 1 is only slightly larger that
γN = 5.0°. Further decrease of m2 results in the switch off of the escapement mechanism and allows the transition to
complete synchronization. For m2 < m1 long period synchronization has not been observed. Notice that in Fig. 24(b) the
phase shift β2 between pendula’s displacements is smaller than π (180.0°) and approximately equal to 126°. Similarly, as
in the example of Fig. 22(a), the difference in the pendula’s amplitudes is created by the energy transfer from pendulum 1
to pendulum 2, as described in Section 3.4.2 by Eqs. (60).

To explain why the antiphase synchronization of the identical clocks is replaced by the phase synchronization of
nonidentical ones, let us consider the energy balance of the synchronized states shown in Fig. 25(a, b).

In the case of antiphase synchronization of identical pendula (Fig. 25(a)) we have two independent streams of energy
(both fulfill Eq. (53)), as both pendula dissipate the same amount of energy as they gain from the escapementmechanism. In
Fig. 25(b) we presented the energy balance of the pendula with different masses in the state of phase synchronization. We
consider the parameter values of Fig. 25(b) and numerically calculated pendulum’s amplitudesΦ1 = 0.121 andΦ2 = 0.548.
The streams fulfill Eq. (60). The energy supplied by the escapement mechanism to the first pendulum (one with smaller
amplitude) WDRIVE

1 is divided in to the energy dissipated in the damper cϕ1 and energy W SYN transferred to the second
pendulum. Notice that the phase shift β2 calculated from Eq. (62) is approximately the same as the numerically calculated
value β2 = 126° (see Fig. 25(b)). Eqs. (41), (42) and (49) allow the estimation of the energies:WDRIVE

i ,WDAMP
i andW SYN

i . The
comparison of analytical and numerical results is presented in Table 1.

The differences between analytical and numerical results are small (values WDRIVE
1 and WDRIVE

2 are exact) which confirm
the accuracy of our energy balance approach. The value of WDAMP

b = 0.00029 (N m) is significantly smaller than the values
of other energies and is not considered in Fig. 25(a, b) and Table 1.

The analytical studies of Section 3.4 are based on the assumption that the periods of pendula’ oscillations are constant
and equal to 2π/α.When the clocks are coupled viamovable beam the pendula’s periods are not constant and depend on the
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Fig. 23. (Color online) Bifurcation diagrams of system (27) and (28): ϕ1, ϕ2 and x versus control parameter m2 : Φ1 ≈ γN = 5.0°,m1 = 1.0 (kg),
l = g/4π2

= 0.2485 (m), M = 10.0 (kg), cx = 1.53 (N s/m), kx = 3.94 (N/m), γN = 5.0°, cϕ1 = 0.0083 (N s m), cϕ2 = 0.0083 × m2 (N s m),
MN1 = 0.075 (N m),MN2 = 0.075 × m2 (N m); (a)m2 increases from 1 to 26.0, (b)m2 decreases from 26.0 to 1.0, (c)m2 decreases from 15.0 to 1.0.

Fig. 24. (Color online) (a) Bifurcation diagram of system (27) and (28): ϕ1, ϕ2 and x versus control parameter m2;m2 decreases from 1.0 (kg) to 0.1 (kg),
(b) time series of ϕ1, ϕ2 and x during the phase synchronization: Φ1 ≈ γN = 5.0° m1 = 1.0 (kg), l = g/4π2

= 0.2485 (m), M = 10.0 (kg), cx = 1.53
(N s/m), kx = 3.94 (N/m), γN = 5.0°, cϕ1 = 0.0083 (N s m), cϕ2 = 0.0083 × m2 (N s m),MN1 = 0.075 (N m), MN2 = 0.075 × m2 (N m).

Table 1
Comparison of analytical and numerical results: m1 = 1.0 (kg), m2 = 0.289 (kg), l = g/4π2

= 0.2485 (m), M = 10.0 (kg), cx = 1.53 (N s/m),
kx = 3.94 (N/m), γN = 5.0°, cϕ1 = 0.0083 (N s), cϕ2 = 0.0083 × m2 (N s m),MN1 = 0.075 (N m),MN2 = 0.075 × m2 (N m).

Numerical Analytical

W SYN
1 W SYN

1 =
 T
0 m1 ẍl cosϕ1ϕ̇1dt = −0.0101 (N m) W SYN

1 = −W SYN
2

W SYN
2 W SYN

2 =
 T
0 m2 ẍl cosϕ2ϕ̇2dt = 0.0100 (N m) W SYN

2 =
2m2 l2α4πΦ1

kx−α2U
m2Φ2 sinβ2 = 0.0107 (N m)

WDRIVE
1 WDRIVE

1 = 2MN1γN = 0.0131 (N m) WDRIVE
1 = 2MN1γN = 0.0131 (N m)

WDRIVE
2 WDRIVE

2 = 2MN2γN = 0.0036 (N m) WDRIVE
2 = 2MN2γN = 0.0036 (N m)

WDAMP
1 WDAMP

1 =
 T
0 cϕ1 ϕ̇

2
1dt = 0.0028 (N m) WDAMP

1 = παcϕ1Φ
2
1 = 0.0024 (N m)

WDAMP
2 WDAMP

2 =
 T
0 cϕ2 ϕ̇

2
2dt = 0.0137 (N m) WDAMP

2 = παcϕ2Φ
2
2 = 0.0143 (N m)
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Fig. 25. Energy balance of pendula; (a) antiphase synchronization of identical pendula – there is no transfer of energy between pendula, (b) phase
synchronization of the pendula with different masses: m1 = 1.0 (kg) and m2 = 0.289 (kg) and Φ1 ≈ γN = 5.0° – pendulum 1 transfers the energy
to pendulum 2 via beamM .

pendula’s masses. The variations of this period are small (for example smaller than 5% for them2/m1 = 11 and parameters
of Table 1).

(ii) Constant damping coefficients cϕ1 = cϕ2 = cϕ and constant driving moments MN1 = MN2 = MN

In the numerical simulations presented below we used the following system parameters: mass of pendulum 1 m1 =

1.0 (kg); the length of the pendula l = g/4π2
= 0.2485 (m) (it has been selected in such a way that when the beamM is at

rest, the period of pendulumoscillations is equal to T = 1.0 (s) and oscillations frequency toα = 2π (s−1)), g = 9.81 (m/s2)
is an acceleration due to the gravity, beam mass M = 10.0 (kg), damping coefficients cϕ1 = cϕ2 = cϕ = 0.01 (N s)
and cx = 1.53 (N s/m) and stiffness coefficient kx = 4.0 (N/m). When the displacements of the pendula are smaller
than γN = 5.0°, the escapement mechanisms generate driving moments MN1 = MN2 = 0.075 (N m) and allow the
pendula to oscillate with amplitude Φ1 = Φ2 = Φ = 0.2575(≈14.75°) when beam M is at rest. Additionally in the
continuous clocks’ model Eqs. (68) and (69) we consider the following values of van der Pol’s damper (causing the self-
excited oscillations) coefficients cϕ vdp = −0.01 (N s m) and ζ = 60.0. Note that because the self-oscillations cϕ vdp and
damping ζ coefficients of two pendula are the same, in the case of the unmovable beam both pendula have the same
amplitudeΦ = 0.26 (≈15°) regardless of theirmasses. Themotion of the beammay change both the period and oscillations
amplitude. In both discontinuous (Eqs. (27) and (28)) and continuous (Eqs. (68) and (69)) models mass m2 of pendulum 2
has been taken as a control parameter. It varies in the wide interval to examine the influence of its changes on the type of
the observed synchronization as the primary objective of these simulations is to investigate the influence of the nonidentity
of the pendula on the observed types of synchronization.

(a) From complete to (almost) antiphase synchronization
The evolution of the behavior of the discontinuous system (27) and (28) starting from complete synchronization of

identical clocks (m1 = m2 = 1.0 (kg)) and the increase of the values of control parameterm2 is illustrated in Fig. 26(a)–(d).
In Fig. 26(a) we present the bifurcation diagram of the system. The mass of pendulum 2 − m2 has been taken as a
control parameter and it increases in the interval [1.0, 41.0]. In the initial state (m1 = m2) the pendula exhibit complete
synchronization.

The increase of the bifurcation parameter leads to the reduction of the oscillations amplitudes of both pendula which are
in the state of almost complete synchronization; their movements are not identical, but very close to identical as shown in
Fig. 26(b). Fig. 26(b) shows the displacements of the pendula ϕ1, ϕ2 and the beam x (for better visibility enlarged 10 times)
for m1 = 1.0 (kg) and m2 = 3.0 (kg). Notice that ϕ1 ≈ ϕ2 as the differences are hardy visible. Further increase of the
mass m2 results in the further reduction of pendula’s amplitudes and the increase of the beam amplitude as can be seen in
Fig. 26(c) for them2 = 20.0 (kg). The period of pendula’s oscillations decreases (in Fig. 26(b) we observe 11.5 periods while
in Fig. 26(c) 17.5 in the same time interval). This reduction is due to the fact that while increasing the mass of pendulum
2, the center of the mass moves towards the ends of the pendula, i.e., towards the material points with masses m1 and
m2 and moves away from the beam with constant mass M (M = 10 (kg) is smaller than m2). For m2 = 30.2 (kg) the
amplitude of pendula’s oscillations decreases to limit Φ ≈ γN = 5°, below which the escapement mechanism is turned
off. For larger values of m2, we observe the oscillations of pendulum 1 with amplitude Φ ≈ 15°, and small oscillations of
pendulum 2 (whose escapement mechanism is switched off as can be seen in Fig. 26(d). The pendulum moves due to the
energy supplied to it by pendulum 1 via the beam.

The evolution of the van der Pol’s system (Eqs. (68) and (69)) behavior starting fromcomplete synchronization of identical
pendula (m1 = m2 = 1.0 (kg)) and increasing the value of control parameter m2 is illustrated in Fig. 27(a)–(f). Fig. 27(a)
presents the bifurcation diagram for the increasing values of m2 (m2 ∈ [1.0, 6.0]). On the vertical axis we show the
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Fig. 26. Evolution from complete to almost antiphase synchronization; (a) bifurcation diagram for increasing values of m2 , (b) time series of almost
complete synchronization m1 = 1.0 (kg) and m2 = 3.0 (kg); (c) time series of almost complete synchronization m1 = 1.0 (kg) and m2 = 20.0 (kg); (d)
time series of almost antiphase synchronization form1 = 1.0 (kg) andm2 = 35.0 (kg)—the escapement mechanism of pendulum 2 is switched off.

maximum values pendulum 1 displacement ϕ1, and the displacement of pendulum 2 ϕ2 and the beam x recorded at the
moments when ϕ1 is maximum. Calculating this diagramwe start with a state of complete synchronization of pendula with
massesm1 = m2 = 1.0 (kg), during which two pendula move in the same way (ϕ1 = ϕ2) in the antiphase to the movement
of the beam.

Increasing the value of m2 we observe that initially both pendula are in the state of almost-complete synchronization.
Fig. 27(b) calculated for m1 = 1.0 (kg), m2 = 2.0 (kg) shows pendula’s displacements ϕ1 ≈ ϕ2 and the displacement of the
beam x (for better visibility enlarged 10 times) as a function of time. Notice that the differences ϕ1 − ϕ2 are hardly visible.

Further increase of mass m2 causes the increase of the amplitude of the pendula’s oscillations and the increase of the
beam oscillations amplitude as can be seen in Fig. 27(d) (m2 = 3.5 (kg)). One observes also the decrease of the period of
the pendulum oscillations (Fig. 27(b) presents 11.25 periods of oscillations while Fig. 27(d) - 12 periods in the same time).
This is due to the fact that with increasing the mass of pendulum 2, the center of the mass moves towards the ends of the
pendula, i.e., towards the material points with massesm1 and m2 and moves away from the beam with constant mass.

Noteworthy is the fact that in a state of complete synchronization, when the displacements of both pendula fulfill the
relation ϕ1(t) = ϕ2(t), the energy transmitted to the beam by each pendulum is proportional to its mass. Therefore these
energies satisfy the following equations:

W SELF
1 =

 T

0
cϕvdpϕ̇2

1dt =

 T

0
cϕvdpϕ̇2

2dt = W SELF
2 ,

W VDP
1 =

 T

0
cϕvdpζ ϕ̇2

1ϕ
2
1dt =

 T

0
cϕvdpζ ϕ̇2

2ϕ
2
2dt = W VDP

2 ,

W SYN
1 =

 T

0
m1ẍl cosϕ1ϕ̇1dt =

m1

m2

 T

0
m2ẍl cosϕ2ϕ̇2dt =

m1

m2
W SYN

2 .

(88)

After substituting Eq. (8) into Eqs. (76) and (76) become contradictory (except in the special non-robust case of two identical
pendulawhenm1 = m2). In the general casewhenm1 ≠ m2 instead of complete synchronizationwe observe occurs almost-
complete synchronization, during which pendula’s displacements and velocities are almost equal and appropriate energies
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satisfy the following equations:

WDAMP
1 =

 T

0
cϕ ϕ̇2

1dt ≈

 T

0
cϕ ϕ̇2

2dt = WDAMP
2 ,

W SYN
1 =

 T

0
m1ẍl cosϕ1ϕ̇1dt ≈

 T

0
m2ẍl cosϕ2ϕ̇2dt = W SYN

2 .

W SELF
1 =
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0
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W VDP
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 T

0
cϕvdpζ ϕ̇2

1ϕ
2
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0
cϕvdpζ ϕ̇2

2ϕ
2
2dt = W VDP

2 ,

W SYN
1 =
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0
m1ẍl cosϕ1ϕ̇1dt ≈

 T

0
m2ẍl cosϕ2ϕ̇2dt = W SYN

2 .

(89)

After substitution of Eq. (89) the energy equations (76) are satisfied for pendula of different masses. Fig. 27(c) shows the
values of all energies as a function of mass m2. As one can see, for m2 < 4.0 (kg) all energies are positive. This means that
both pendula transfer the part of their energy to the beam, causing its motion (see Eq. (83)).

For m2 = 4.0 (kg), the system undergoes bifurcation, an attractor of almost complete synchronized state loses its
stability and we observe a jump to the co-existing attractor of almost-antiphase synchronization as shown in Fig. 27(e)
(m2 = 5.0 (kg)). The amplitudes of the pendula’s oscillations are different but the phase shift between the pendula is close
to π (180°) The oscillations of the beam are so small that they are not visible in the scale of Fig. 27(e).

One can show that when one change the mass of pendulum 1 to m1 = 2.0 (kg), m1 = 3.0 (kg), m1 = 4.0 (kg), the
bifurcation from almost-complete to almost-antiphase synchronizations occurs respectively for m2 = 3.0 (kg), m2 =

2.0 (kg) andm2 = 1.0 (kg). This bifurcation occurs when the total mass of both pendula reach critical valuemcr = 5.0 (kg),
which depends on the system parameters, particularly on the beam parametersM, cx and kx.

Fig. 27(f) shows the time series of the beam vibrations and the two pendula oscillations in the case of identical masses
m1 = m2 = 3.0 (kg) in the state of complete synchronization. These results have been obtained for identical initial
conditions, so that they constitute de facto the pendulumofmassm = 6.0 (kg) > mcr . It is easy to see that this synchronized
state is unstable: small disturbances lead to a stable coexisting attractor of antiphase synchronization. Notice that for
pendula with slightly different masses (e.g., m1 = 2.99 (kg) and m2 = 3.01 (kg)) it is impossible to obtain a result similar
to that shown in Fig. 27(f) even for identical initial conditions. Different pendula’s masses cause that initially an almost-
complete synchronization is observed but small differences inϕ1 andϕ2 lead to the stable almost-antiphase synchronization.

Both discontinuous (Eqs. (27) and (28)) and continuous (Eqs. (68) and (69)) models show the same three types of
synchronized behavior. The bifurcation diagram of Fig. 26(a) (discontinuous model) shows the existence of: (i) complete
synchronization for m1 = m2 = 1.0 (kg), (ii) almost complete synchronization for 1.0 < m2 < 30.3 (kg), (iii)
almost antiphase synchronization, with one pendulum with turned off escapement mechanism (in Fig. 26(a) pendulum
2 has a turned off mechanism) for m2 > 30.3 (kg) and the bifurcation diagram of Fig. 27(a) (continuous model) shows:
(i) complete for m1 = m2 = 1.0 (kg), (ii) almost-complete for 1.0 < m2 < 4.0 (kg), (iii) almost-antiphase for
m2 > 4.0 (kg). The quantitative differences in both models occur due to the possibility of the breakdown of the energy
supply in the discontinuous model (switch-off of the escapement mechanism) while in the continuous model energy is
supplied permanently.
(b) From complete synchronization to quasiperiodic oscillations

The evolution of system (27) and (28) behavior starting from complete synchronization of identical pendula (m1 =

m2 = 1.0 (kg)) and the decrease of the values of the control parameter m2 is illustrated in Fig. 28(a)–(d). Fig. 28(a) shows
the bifurcation diagram for decreasing values of mass m2 (m2 ∈ [0.01, 1.00]). In the interval 1.0 > m2 > 0.25 (kg),
both pendula are in a state of almost-complete synchronization. Their oscillations are ‘‘almost identical’’ as can be seen in
Fig. 28(b) form1 = 1.0 (kg) andm2 = 0.01 (kg). The differences between the amplitudes and phases of ϕ1 and ϕ2 are close
to zero, both pendula remain in the (almost) antiphase to the oscillations of the beam. Further reduction of massm2 leads to
the loss of synchronization and the motion of the system becomes quasiperiodic as shown in Fig. 28(c). Fig. 28(d) presents
the Poincare map (the displacements and velocities of the pendula have been taken at the moments of the greatest positive
displacement of the first pendulum) form2 = 0.2 (kg).

Evolution of system (68) and (69) behavior starting from complete synchronization of identical pendula (m1 = m2 =

1.0 (kg)) and decreasing the values of the control parameterm2 is illustrated in Fig. 29(a)–(d). Fig. 28(a) shows the bifurcation
diagram for decreasing values of the mass m2(m2 ∈ [0.01, 1.00]). In the interval 1.0 > m2 > 0.0975, both pendula
are in a state of almost-complete synchronization. Their oscillations are ‘‘almost identical’’ as can be seen in Fig. 29(b) for
m1 = 1.0 (kg) and m2 = 0.01 (kg),the differences between the amplitudes and phases of ϕ1 and ϕ2 are close to zero, both
pendula remain in the (almost) antiphase to the oscillations of the beam.

Fig. 29(c) shows the values of different energies. As in the interval 1.0 < m2 < 4.0 (kg) of Fig. 29(c), all energies are
positive and both pendula drive the beam M . Further reduction of mass m2 leads to the loss of synchronization and the
motion of the system becomes quasi-periodic. Fig. 29(d) presents the Poincare map (the displacements and velocities of the
pendula have been taken at the moments of greatest positive displacement of the first pendulum) for m2 = 0.07 (kg). The
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Fig. 27. Evolution from complete to almost antiphase synchronization; (a) bifurcation diagram for increasing values of m2 , (b) time series of almost
complete synchronization m1 = 1.0 (kg) and m2 = 2.0 (kg); (c) plots of system’s energy; (d) time series of almost complete synchronization for
m1 = 1.0 (kg) and m2 = 3.5 (kg); (e) time series of almost antiphase synchronization: m1 = 1.0 (kg), m2 = 5.0 (kg); (f) nonstationary complete
synchronization:m1 = m2 = 3.0 (kg).

mechanism of the loss of stability is explained in Fig. 29(c). In the interval 0.35 > m2 > 0.07 (kg) the energy dissipated by
the first pendulum W VDP

1 approaches the level of the energy supplied by the self-excited component of the this pendulum
W SELF

1 . Consequently, the energyW SYN
1 supplied by the first pendulum to the beam decreases. The energyW SELF

2 supplied to
the system by the second pendulum also decreases. For m2 < 0.07 (kg) the energy balance is disrupted: pendulum m2 has
not enough energy to cause its own oscillations, the oscillations of the beam and additionally support the oscillations of the
first pendulum. In this case the almost-antiphase synchronization is not possible (see Section 3.5) and the system (68) and
(69) exhibits quasiperiodic oscillations.

In this case both discontinuous and continuous models show qualitatively the same behavior but with large quantitative
differences. The bifurcation diagram of Fig. 28(a) shows the existence of; (i) complete synchronization for m1 = m2 =

1.0 (kg), (ii) almost complete synchronization for 1.0 > m2 > 0.0975 (kg), (iii) the lack of synchronization and
quasiperiodic oscillations form2 < 0.25 (kg)while the bifurcation diagram of Fig. 29(a) shows the existence of; (i) complete
synchronization form1 = m2 = 1.0 (kg), (ii) almost-complete synchronization for 1.0 > m2 > 0.0975 (kg), (iii) the lack of
synchronization and quasiperiodic oscillations form2 < 0.0975 (kg).

(d) From antiphase to almost-antiphase synchronization
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Fig. 28. Evolution from complete synchronization to quasiperiodic oscillations; (a) bifurcation diagram for increasing values of m2 , (b) time series of
almost complete synchronization form1 = 1.0 (kg) andm2 = 0.3 (kg), (c) time series of quasiperiod oscillations form1 = 1.0 (kg) andm2 = 0.2 (kg), (d)
Poincare map showing quasiperiodic oscillations form1 = 1.0 (kg) and m2 = 0.2 (kg).

The evolution of system (27) and (28) behavior starting from antiphase synchronization of identical pendula (m1 =

m2 = 1.0 (kg)) and the increase of the values of the control parameterm2 is illustrated in Fig. 30(a)–(c). Fig. 30(a) presents
another bifurcation diagram for the increasing values of m2 (m2 ∈ [1.0, 41.0]). This time we start with a state of antiphase
synchronization of pendula with massesm1 = m2 = 1.0 (kg), during which two pendula are moving in the same way, such
that ϕ1(t) = −ϕ2(t) and the beam is at rest.

The increase of bifurcation parameterm2 leads to the increase of the oscillations amplitude of pendulum1 (with constant
mass (m1 = 1.0 (kg))) and the decrease of the amplitude of pendulum 2 (with increasing mass m2). The pendula remain
in the state of almost-complete synchronization as the phase shift between their displacements is close to π (180°) as
shown in Fig. 30(b) for m1 = 1.0 (kg) and m2 = 2.0 (kg). In Fig. 30(b) displacements ϕ1 and ϕ2 are almost in antiphase
(difference between antiphase and almost antiphase is hardly visible). The beam is oscillating and its displacement x is
shifted by approximately π/2(90°) (respectively forward and backward) in relation to the pendula’ displacements. The
beam oscillations are caused by the energy transmitted to the beam by pendulum 2. Part of this energy is dissipated in
the beam damper cx and part is transferred to pendulum 1. As the results of this transfer pendulum 1 oscillates with
the amplitude larger than initial Φ ≈ 15° (see discussion in Section 3.4). When mass m2 reaches the value equal to
4.45 (kg) the amplitude of pendulum 2 oscillations decreases below the critical value Φ ≈ γN = 5°. In the interval
4.45 < m2 < 5.30 (kg) the escapementmechanism of pendulum2 is turned off andwe observe quasiperiodic oscillations of
the system (27) and (28). The example of quasiperiodic oscillations is shown in Fig. 30(c). There are two irregular phases of
these oscillations: (i) after turning off the escapementmechanism of pendulum 2, it does not provide energy to pendulum 1,
the amplitude of pendulum 1 oscillations decreases and simultaneously the amplitude of pendulum 2 oscillations increases
and its escapementmechanism is turned on, (ii) after switching on of the escapementmechanism of pendulum 2, it provides
the energy to pendulum1,which causes the reduction of pendulum2amplitude and leads to the switch off of the escapement
mechanism. For m2 > 5.3 (kg) the escapement mechanism of pendulum 2 is turned off and the system tends to almost
antiphase synchronization.

The evolution of system (68) and (69) behavior starting from antiphase synchronization of identical pendula (m1 =

m2 = 1.0 (kg)) and increasing the values of the control parameter m2 is illustrated in Fig. 31(a)–(d). Fig. 31(a) presents
another bifurcation diagram for the increasing values of m2 (m2 ∈ [1.0, 6.0]). We start again with a state of antiphase
synchronization of pendula with masses m1 = m2 = 1.0 (kg), during which the two pendula are moving in the same way
(ϕ1 = −ϕ2) and the beam is at rest.
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Fig. 29. Evolution from complete synchronization to quasiperiodic oscillations; (a) bifurcation diagram for increasing values ofm2 , (b) time series of almost
complete synchronization for m1 = 1.0 (kg) and m2 = 0.1 (kg), (c) energy plots, (d) Poincare map showing quasiperiodic oscillations for m1 = 1.0 (kg)
and m2 = 0.07 (kg).

The increase of the control parameterm2 leads to the reduction of pendulum2amplitude of oscillations but the amplitude
of oscillations of pendulum1 remains nearly constant. The pendula remain in a state of almost-phase synchronization: phase
shift between the displacements is close toπ (180°), as shown in Fig. 31(b) (m1 = 1.0 (kg),m2 = 1.5 (kg)). The displacement
of the beam is practically equal to zero.

In the state of antiphase synchronization when pendula’s oscillations satisfy the condition ϕ1(t) = −ϕ2(t), two van der
Pol’s dampers dissipate the same amount of energy. The energies transmitted by both pendula to the beam have absolute
values proportional to pendula’s masses and opposite signs:

W SELF
1 =

 T

0
cϕvdpϕ̇2

1dt =

 T

0
cϕvdpϕ̇2

2dt = W SELF
2 ,

W VDP
1 =

 T

0
cϕvdpζ ϕ̇2

1ϕ
2
1dt =

 T

0
cϕvdpζ ϕ̇2

2ϕ
2
2dt = W VDP

2 , (90)

W SYN
1 =

 T

0
m1ẍl cosϕ1ϕ̇1dt = −

m1

m2

 T

0
m2ẍl cosϕ2ϕ̇2dt = −

m1

m2
W SYN

2 .

After substituting the energy values satisfying Eqs. (90) into Eqs. (76) and (76) are not contradictory equations only when
the beam acceleration is zero, which implies the zero value of its velocity and acceleration (in the synchronization state the
behavior of the system is periodic). This condition requires balancing of the forceswhich act on the pendulumbeam, and this
in turn requires that the pendulum has got the same mass. If the masses of the pendula are different, instead of antiphase
synchronization we observe an almost-antiphase synchronization, during which the pendula have different amplitude and
the phase shift between them is close, but not equal to π (180°). Hence

W SELF
1 ≠ W SELF

2 ,

W VDP
1 ≠ W VDP

2 ,

W SYN
1 ≠ W SYN

2 .

(91)

The values of each considered energy are shown in Fig. 31(c). In the state of almost-antiphase synchronization we have
W SELF

1 < W VDP
1 and W SELF

2 > W VDP
2 . Part of the energy W SELF

2 supplied by the van-der-Pol’s damper of pendulum 2 (with a
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Fig. 30. Evolution from antiphase to almost antiphase synchronization; (a) bifurcation diagram for increasing values of m2 , (b) time series of almost
antiphase synchronization form1 = 1.0 (kg) andm2 = 2.0 (kg), (c) Poincare map of quasiperiodic oscillations form1 = 1.0 (kg) and m2 = 5.0 (kg).

greater mass) is transferred via the beam (as W SYN
2 ) to pendulum 1 (for this pendulum it is a negative energy denoted by

W SYN
1 ) and together with the energyW SELF

1 dissipated asW VDP
1 by van der Pol damper. Van der Pol’s component of pendulum

2 dissipates the rest of the energy W SELF
2 , as W VDP

2 . The energy dissipated by the beam damper is negligibly small, because
the beam virtually does not move.

Fig. 31(d) shows the time series of the system oscillations for m2 = 20.0 (kg). We observe that further increase of m2
causes the reduction of the amplitude of pendulum 2 oscillations; the amplitude of oscillations of pendulum 1 remains
unchanged. It can be observed that when the mass m2 increases, the equality of forces, with which the pendula act on the
beam occurs at decreasing amplitude of oscillations of pendulum 2. Pendulum 1 (with smaller mass) has a virtually constant
amplitude of oscillations and works here as the classical dynamical damper.

The comparison of Figs. 27(a) and 31(a) indicates that in the interval 1.0 < m2 < 4.0 (kg) almost-complete and almost-
antiphase synchronization coexist (the initial conditions decide about which of them takes place).

The comparison of the discontinuous and continuous models show the quantitative difference as the continuous
model does not show quasi-periodic behavior. The bifurcation diagram of Fig. 30(a) shows the existence of: (i) antiphase
synchronization for m1 = m2 = 1.0 (kg), (ii) almost-antiphase synchronization for 1.0 < m2 < 4.45 (kg), (iii) the
lack of synchronization and quasi-periodic oscillations for 4.45 < m2 < 5.3 (kg), (iv) almost-antiphase synchronization
with the switch off of the escapement mechanism of pendulum 2 for m2 > 5.3 (kg) and the diagram shown in Fig. 31(a)
shows the existence of: (i) antiphase synchronization for m1 = m2 = 1.0 (kg), (ii) almost-antiphase synchronization for
1.0 < m2 < 6.0 (kg) (our research shows that this state is preserved for larger valuesm2).

(e) From antiphase synchronization to quasiperiodic oscillations
The evolution of system (27) and (28) behavior starting from antiphase synchronization of identical pendula (m1 =

m2 = 1.0 (kg)) and the decrease of the values of the control parameter m2 is illustrated in Fig. 32(a, b). Fig. 32(a) shows
the bifurcation diagram of the system (27) and (28) for decreasing values of m2 (m2 decreases from an initial value 1.0 (kg)
up to 0.01 (kg)). We start from the state of antiphase synchronization observed for m1 = m2 = 1.0 (kg). In the interval
1.0 > m2 > 0.38 (kg) both pendula are in the state of almost antiphase synchronization. Their displacements are out
of phase by an angle close to 180° as shown in Fig. 32(b) showing the time series of ϕ1, ϕ2 and x for m1 = 1.0 (kg) and
m2 = 0.5 (kg). When mass m2 decreases from 1.0 (kg) to 0.56 (kg), the amplitude of oscillations of pendulum 1 decreases
and the amplitude of oscillations of pendulum 2 increases. In the interval 0.56 > m2 > 0.38 (kg)we observe a fast decrease
of pendulum 2 amplitude up to the limit value Φ ≈ γN = 5°. For m2 = 0.38 (kg) system (27) and (28) changes the
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Fig. 31. Evolution from antiphase to almost antiphase synchronization; (a) bifurcation diagram for increasing values of m2 , (b) time series of almost
antiphase synchronization for m1 = 1.0 (kg) and m2 = 1.5 (kg), (c) energy plots, (d) time series of almost antiphase synchronization for m1 = 1.0 (kg)
and m2 = 20.0 (kg).

Fig. 32. Evolution from antiphase synchronization to quasiperiodic oscillations; (a) bifurcation diagram of system (27) and (28) for decreasingm2 , (b) time
series of almost antiphase synchronization form1 = 1.0 (kg), m2 = 0.5 (kg).

type of the synchronization to almost complete (previously observed in Fig. 28(a, b). Further reduction of m2 leads to the
quasi-periodic motion of the system (as described in Section b).

The evolution of system (68) and (69) behavior starting from antiphase synchronization of identical pendula (m1 =

m2 = 1.0 (kg)) and decreasing the values of the control parameter m2 are illustrated in Fig. 33(a)–(d). Fig. 33(a) shows the
bifurcation diagramof the system (68) and (69) for decreasing values ofm2 (m2 decreases froman initial value 1.0 up to 0.01).
We start from the state of antiphase synchronization observed form1 = m2 = 1.0 (kg). In the interval 1.0 > m2 > 0.45 (kg),
both pendula are in the state of almost-antiphase synchronization, as shown in Fig. 33(b) for m2 = 0.5 (kg). We observe
a phenomenon similar to that of Fig. 31(a), i.e., when decreasing mass m2, the amplitude of oscillations of pendulum 1
decreases (in this case pendulum 1 has larger mass), the amplitude of pendulum 2 oscillations is practically constant and
pendulum 2 acts as a dynamical damper. In Fig. 33(c) one can see the negative energy W SYN

2 —there is a transfer of energy
from pendulum 1 to pendulum 2.
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Fig. 33. Evolution from antiphase synchronization to quasiperiodic oscillations; (a) Bifurcation diagram of system (68) and (69) for decreasingm2 , (b) time
series of almost antiphase synchronization form1 = 1.0,m2 = 0.5, (c) energy plots, (d) Poincaremaps showing quasiperiodic oscillations form1 = 1.0 (kg)
andm2 = 0.44 (kg).

For m2 = 0.45 (kg) we observe the loss of synchronization due to the fact that energy W SELF
1 becomes equal to energy

W SYN
1 whichmeans that all the energy supplied to pendulum 1 by van der Pol’s damper is transmitted to pendulum 2 via the

beam. For smaller values ofm2, pendulum 2 is not able to supply the energy needed to maintain a state of almost-antiphase
synchronization and the systems first obtains the state of almost-complete synchronization, and nextwhenm2 < 0.095 (kg)
exhibits unsynchronized quasi-periodic oscillations. The behavior of the system for m2 < 0.415 (kg) has been described in
Section 4.2.2(b).

In the narrow interval between the state of almost antiphase and the state of almost-complete synchronization, i.e., for
0.45 > m2 > 0.415 (kg) we observe quasiperiodic oscillations of the system, as shown on the Poincare map of Fig. 33(d)
(m2 = 0.44 (kg)).

The bifurcation diagram of Fig. 32(a) shows the existence of: (i) antiphase synchronization for m1 = m2 = 1.0 (kg),
(ii) almost antiphase synchronization for 1.0 > m2 > 0.38 (kg), (iii) almost complete synchronization for 0.38 >
m2 > 0.25 (kg), (iv) the lack of synchronization and quasiperiodic oscillations for m2 < 0.25 (kg) and the bifurcation
diagram of Fig. 33(a) shows the existence of: (i) antiphase synchronization for m1 = m2 = 1.0 (kg), (ii) almost-
antiphase synchronization for 1.0 > m2 > 0.45 (kg), (iii) the lack of synchronization and a quasi-periodic oscillations
for 0.45 > m2 > 0.415 (kg), (iv) almost-complete synchronization for 0.415 > m2 > 0.095, (v) the lack of synchronization
and quasi-periodic oscillations form2 < 0.095 (kg).

4.2.3. Synchronization of two pendula with different lengths
This section presents our results obtained for the case of clock’s pendula with the same mass but different lengths. In

numerical calculations we consider the following parameter values. The first pendulum is characterized by: m = 1.0 (kg),
l1 = g/4π2

= 0.2485 (m) (i.e., in the case when the beam is at rest its period of free oscillations is equal to T0 = 1 (s) and
its frequency is equal to α10 = 2π ; g = 9.81 (m/s2)), cϕ1 = 0.01 (N s m), MN1 = 0.075 (N m), γN = 5°. When the beam is
at rest the pendulums perform the oscillations with amplitudeΦ10 ≈ 15°. The second pendulum has the same massm and
γN . Its length is equal to l2 = ξ 2l1 (i.e., α2 = α1/ξ and T20 = ξT10) and cϕ2 = ξcϕ1, MN2 = ξMN1. The coefficient ξ is called
the scale factor of the second pendulum. The proportionality of the damping coefficients and escapement mechanisms’
moments of both pendula result in the equality of the amplitudes Φ20 = Φ10. In Fig. 34 we show the oscillations ϕ1 and
ϕ2 of pendula 1 (thick line) and 2 (thin line) suspended on nonmoving beam versus time represented by the number of
oscillation periods of the first pendulum N .
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Fig. 34. Oscillations of two pendula: ξ = 0.5.

Fig. 35. (a) Bifurcation diagram of system (27) and (28) for decreasing ξ ; (bifurcation diagram: starts with ξ = 1.0 and ϕ10 = ϕ20 = 0.26 and ends with
ξ = 0.5), (b) minima of amplitudes of pendula’s oscillations, (c) enlargement of (a) in the neighborhood of synchronization 1/2.

As ξ = 0.5 one can observe that T20 = 0.5T10 and that the amplitudes of both pendula are the same. Beam’s parameters
are as follows: its mass is assumed to beM = 5.0, the stiffness kx and damping coefficients cx are related to the beammass,
i.e., kx = 0.1M, cx = M .

Figs.(a) and 36(a) show respectively the bifurcation diagrams of the system (27) and (28) calculated for decreasing and
increasing values of ξ . In Fig. 37(a)–(f) the time series of characteristic system behavior are presented.
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Fig. 36. (a) Bifurcation diagram of system (27) and (28) for increasing ξ ; (bifurcation diagram: starts with ξ = 0.5 and ϕ10 = ϕ20 = 0.26 and ends with
ξ = 1.0) (b) minima of amplitudes of pendula’s oscillations; (c) enlargement of (a) in the neighborhood of synchronization 2/3.

In the bifurcation diagrams the position ϕ2 of pendulum 2 (registered at the moment when pendulum 1 passes through
0 with a positive velocity (ϕ1 = 0.0, ϕ̇1 > 0.0)) is plotted versus ξ parameter. The calculations presented in Fig. 35(a)
started at ξ = 1.0 (i.e., identical pendula) and the following initial conditions x0 = 0.0, v0 = 0.0, ϕ10 = 0.26,
ϕ̇10 = 0.0, ϕ20 = 0.26, ϕ̇20 = 0.0 for which the system in a state of in-phase synchronization shown in Fig. 37(a). Next,
the value of ξ has been reduced by the step ∆ξ = 0.00125 up to ξ = 0.5. With the decrease of ξ (i.e., the shortening of
the length of pendulum 2), in-phase synchronization persists till ξ = 0.92. Fig. 37(a) presents the example of 1 : 1 in-phase
synchronization for ξ = 0.95. Both pendula are moving in the anti-phase to the motion of the beam so their periods of
oscillations decrease T1 < T10 and T2 < T20. The differences of the values of the amplitudes of both pendula cause that
T10 − T1 > T20 − T2 and after the transient the systems reach common value T = 0.84.

For the smaller values of ξ one observes the transition to anti-phase synchronization shown in Fig. 37(b). This type
of behavior is preserved up to ξ = 0.55. Notice that for ξ = 0.55 the ratio of the lengths of both pendula is equal to
l2/l1 = ξ 2 = 0.3025 (i.e., the triple difference in the lengths). In Fig. 37(b) an example of anti-phase 1 : 1 synchronization
obtained for ξ = 0.92 is shown. Pendulum 1 moves in anti-phase with the motion of the beam so its period of oscillations
decreases (T1 < T10) while pendulum 2 moves in phase with the beam motion and its period increases (T2 > T20). After an
initial transient the periods of oscillations reach the common value T20 < T = 0.98 < T10.

With further increase of the values of ξ in the interval 0.55 > ξ > 0.51 one observes the quasiperiodic behavior. In this
interval the desynchronization of both pendula occurs. The example of quasiperiodic behavior for ξ = 0.6871 is shown in
Fig. 37(c, d). Time series of the system (27) and (28) are shown in Fig. 37(c) and the Poincare map showing the position of
pendulum2 at the timewhen pendulum1 ismoving through zerowith positive velocity is presented in Fig. 37(d). The closed
curve at the Poincare map confirms that the behavior is quasiperiodic. The subsequent change in the pendula’ configuration
leads to 1 : 2 synchronization explained in Fig. 37(e). Fig. 37(e) shows the synchronization obtained by doubling the period of
pendulum 2 (ξ = 0.51). Common period of pendula’s oscillations is equal to the period of pendulum 1− T1 and two periods
of pendulum 2, i.e., T = T1 = 2T2 = 0.94. Noteworthy is the fact that in the case of nonmoving beam this synchronization
will occur for ξ = 0.5 = 1/2 and T1 = 2T2. In the case of oscillating beam this transition is shifted (from ξ = 0.50 to
ξ = 0.51) as due to the different pendula’s displacements ϕ1 ≠ ϕ2 and their different lengths l1 ≠ l2 the resultant of
the forces with which the pendula act on the beam is not always equal to zero. Fig. 35(b) explains why different types of
synchronization are visible along the bifurcation diagram in Fig. 35(a). The amplitudes of both pendula Φ1 and Φ2 versus
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coefficient ξ are shown together with the value of the operations angle of the escapement mechanism γN . Notice that for
ξ = 0.92, when the in-phase 1 : 1 synchronization is replaced by the anti-phase 1 : 1 synchronization, the amplitude of
pendulum 1 Φ1 decreases to the value equal to γN . With further decrease of ξ the escapement mechanism of pendulum 1
does not operate and the amplitude Φ1 decreases due to the damping cϕ1. The escapement mechanism starts to operate
again due to the large amplitude difference and the system reach anti-phase 1 : 1 synchronization. With further decrease of
ξ the amplitude of pendulum 2Φ2 decreases up to the critical value γN(ξ = 0.55)when the escapement mechanism of this
pendulum is switched off. The perturbation which results from this switched off desynchronize pendula. For smaller values
of ξ , one observes quasiperiodic behavior. In this case the values ofΦ1 andΦ2 are not constant for given ξ , so Fig. 35(b) shows
their minimum values. As both minimum values of Φ1 and Φ2 are nearly twice larger than the value of γN the escapement
mechanisms of both pendula are not switched off during the quasiperiodic behavior. Fig. 35(c) shows the enlarged part of the
diagram of Fig. 35(a). Synchronization 1 : 2 is visible on it as a single line of ϕ2 in the interval 0.51 > ξ > 0.5095. The length
of this interval is equal to∆ξ = 0.0005, i.e., the given length of pendulum 1, say l1 ≈ 0.25 (m) the length of pendulum 2 can
change only by 0.0001 (m), so the practical importance of this synchronization is rather low. In the last considered interval
0.5095 > ξ > 0.5 the system (27) and (28) shows quasiperiodic behavior. With further decrease of ξ one can observe the
1/3 synchronization (not shown in Fig. 35(a)) for ξ = 0.3375. In this case the oscillation period common for both pendula
T is equal to the period of pendulum 1 T1 and three periods of pendulum 2 T2, i.e., T = T1 = 3T2.

Fig. 36(a)–(c) shows the bifurcation diagram calculated for the increasing values of ξ (from 0.5 to 1.0). Differently to the
case of decreasing ξ , the interval of quasiperiodic behavior is larger as can be seen in Fig. 36(a). Such a behavior exists
for 0.5 < ξ < 0.82 so in the interval 0.55 < ξ < 0.82 one can observe two co-existing attractors; periodic (1 : 1
anti-phase synchronization) and quasiperiodic one. The quasiperiodic interval is characterized by the periodic windows,
for example these visible for ξ = 0.68875 (≈2/3), ξ = 0.6168 (≈3/5), ξ = 0.783 (≈3/4). Fig. 36(b) allows the
determination of the moments when the escapement mechanism is switched off. For the quasiperiodic behavior in the
interval 0.5 < ξ < 0.82 the minimum values of Φ1 and Φ2 are larger than γN so the mechanism is not switched off.
With the decrease of ξ the amplitude of pendulum 2 decreases and is equal to γN for ξ = 0.82. For further increase of ξ
the escapement mechanism of pendulum 2 is switched off, the quasiperiodic behavior is perturbed and the regime of anti-
phase 1 : 1 synchronization is achieved. Fig. 36(c) shows the enlargement of the part of bifurcation diagram of Fig. 36(a).
In the interval 0.6885 < ξ < 0.6888 one observes 2 : 3 synchronization. This type of synchronization has been achieved
by the doubling of the period of pendulum 1 T1 and tripling the period of pendulum 2 − T2. The time series characteristic
for this behavior are shown in Fig. 37(f) (ξ = 0.6887). The period of oscillations common for both pendula is equal to
T = 2T1 = 3T2 = 1.91 (s). For ξ = 0.783 we observe 3 : 4 synchronization and for ξ = 0.6158 3 : 5 synchronization. All
these synchronized regimes exist in the very narrow intervals of ξ .

The bifurcation diagrams of Figs. 43(a)–(c) and 44(a)–(c) show the existence of two different attractors for some ξ -
intervals. For 1.0 > ξ > 0.92 one can observe 1 : 1 in-phase and 1 : 1 anti-phase synchronization, and for 0.82 > ξ > 0.55
1 : 1 anti-phase synchronization and quasiperiodic behavior (or 1 : 2, 2 : 3, 3 : 4,. . . synchronization in the narrowwindows).

The question how the co-existing attractors are sensitive to the external perturbations cannot be generally answered as
both phase and parameter spaces of the system are high-dimensional. We partially deal with this problem by performing
the following experiment. Having assume that the system is operating on one of the coexisting attractors we perturb the
state of pendulum 2 and observe to which attractor the systemwill approach. Such a procedure allows the estimation of the
basins of attraction of the coexisting attractors shown in Fig. 38(a)–(c).

The perturbation of the state of pendulum 2means the change of its position to the new state given by ϕ20 and ϕ̇20. Other
system parameters, i.e., ϕ1, ϕ̇1, x and, ẋ are not changed at the moment of perturbation. Then the system (1) performs the
transient evolution which leads to one of the coexisting attractors. Notice that such perturbation can influence the acting of
the escapement mechanism. If in the moment of perturbation the mechanism is in the first stage (see eq. Section 2.2) and
new value of ϕ20 is larger than γN , the mechanismmoves to step 2. When in the unperturbed state the mechanism is in step
2 and new value of ϕ20 is smaller than−γN , the mechanism goes to step 1. For other cases the perturbation has no influence
on the acting of the escapement mechanism.

In the example presented in Fig. 38(a) we assume that system (1) performs 1 : 1 in-phase synchronization for ξ = 0.95
(the coexisting attractor is anti-phase 1 : 1 synchronization).When the systemhas been in the state given by:ϕ1 = 0.0, ϕ̇1 =

0.9616, ϕ2 = 0.01808, ϕ̇2 = 1.4945, x = −0.001635, ẋ = −0.080947 pendulum 2 has been perturbed to the state given
by (ϕ20, ϕ̇20). The initial perturbations (ϕ20, ϕ̇20) after which system (27) and (28) returns to 1 : 1 in-phase synchronization
are shown in navy blue and these after which the system goes to anti-phase 1 : 1 synchronization are shown in blue.

Fig. 38(b) presents the results obtained for ξ = 0.95 and the initial state given by ϕ1 = 0.0, ϕ̇1 = 1.9525, ϕ2 =

−0.0207, ϕ̇2 = −1.48, x = −0.000267, ẋ = −0.0221, i.e., the system has been on the 1 : 1 anti-phase synchronization
attractor at the moment of perturbation. The basins of in-phase and anti-phase synchronization are shown respectively in
navy and blue.

For ξ = 0.6887 system (1) has two attractors; 1 : 1 anti-phase and 2 : 3 synchronization (see Fig. 38(c)). In the time of
perturbation the system has been in the state: ϕ1 = 0.0, ϕ̇1 = 1.8385, ϕ2 = −0.05257, ϕ̇2 = −0.558, x = 0.00004, ẋ =

−0.0559 exhibiting 1 : 1 anti-phase synchronization. The basins of 1 : 1 anti-phase and 2 : 3 synchronization are shown
respectively in blue and red in Fig. 38(c).
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Fig. 37. Different types of synchronization of the clock pendula; (a) in-phase synchronization 1/1 for ξ = 0.95; (b) antiphase synchronization 1/1 for
ξ = 0.95; (c) time series of quasiperiodic oscillations for ξ = 0.6871, (d) Poincare map for ξ = 0.6871, (e) synchronization 1/2 for ξ = 0.51; (f)
synchronization 2/3 for ξ = 0.6887.

4.2.4. Chaos in the coupled clocks
In this section we give evidence that the pendula of two coupled clocks can exhibit robust chaos. Let us return to

the system of Section 4.2.2(i), i.e., the pendula with the same length but different masses. In our numerical simulations
equations (27) and (28) have been integrated by the 4th-order Runge–Kutta method adopted for the discontinuous systems
(the integration step has been decreased when the trajectory has been approaching discontinuity at ϕi ± −γ N ). The initial
conditions have been set as follow; (i) for the beam x(0) = ẋ(0) = 0, (ii) for the pendula the initial conditions ϕ1(0), ϕ̇1(0)
have been calculated from the assumed initial phases β10 and β20, i.e., ϕ1(0) = Φ sinβ10, ϕ̇1(0) = αΦ cosβ10, ϕ2(0) =

Φ sinβ20, ϕ̇2(0) = αΦ cosβ20, where Φ and α = 2π/T are respectively the amplitude and the frequency of the pendula
when the beam M is at rest. We consider the following parameter values: γN = 5.0°, l = g/4π2

= 0.2485 (m),
M = 10.0 (kg), m1 = 1 (kg), cx = 1.53 (N s/m), kx = 3.94 (N/m), cϕ1 = 0.0083 × m1 (N s), cϕ2 = 0.0083 × m2
(N s), MN1 = 0.075 × m1 (N m), MN2 = 0.075 × m2 (N m) and m2 ∈ [3.10, 4.27], for which system (27) and (28) exhibits
the coexistence of (CS), (LPS) and chaotic behavior.

In Fig. 39(a)–(d) we show Poincare maps for typical periodic and chaotic solutions. We plot position ϕ2 and velocity ϕ̇2
of the second pendulum when the first pendulum has zero velocity ϕ̇1 = 0 and changes its sign from positive to negative.
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Fig. 38. Basins of attraction of the coexisting attractors: (a) ξ = 0.95; (b) ξ = 0.96, (c) ξ = 0.6887.

The examples of (LPS) with periods 6T 35T and 59T are shown in Fig. 39(a)–(c) and Fig. 39(d) presents chaotic behavior. The
pendulum trajectory of Fig. 39(d) is characterized by the largest Lyapunov exponent equal to 0.127. As Eqs. (27) and (28)
are discontinuous one cannot directly calculate the largest Lyapunov exponent from the linearized dynamics around the
trajectory so we adapted the synchronization method described in [104,105]. These calculations confirm that the coupled
clocks can exhibit chaotic behavior.

Next for a given value of m2 we consider the influence of the escapement mechanism parameters (γN and MN ) on the
behavior of clocks’ pendula. We assume that the energy supplied to the system is the same in all cases, i.e., the product
of γN MN is constant, so when we change γN we also recalculate MN . Notice that in the case of identical clocks (pendula
with the same masses) one can observe only two states: in-phase motion (complete synchronization (CS)) and anti-phase
motion (phase synchronization (PS) with the phase shift equal to π ). Recall Fig. 21(c) showing a typical basin of attraction
for identical clocks. Navy blue and yellow colors indicate (CS) and (PS) synchronizations respectively. When we take the
close values of initial phases the system tends to complete in-phase synchronization. This tendency is not significantly
changed for nonidentical clocks (even with the large differences in pendula’s masses). When the clocks are nonidentical
they cannot exhibit antiphase synchronizations. In the initial conditions’ domain in which identical clocks show antiphase
synchronization (yellow in Fig. 21(c)) one observes the coexistence of (PS), (LPS) synchronizations and chaotic motion of
pendula. Fig. 40(a)–(f) shows the basins of attraction form2 = 3.105 (kg) and six different values of escapementmechanism
parameter γN (γN = 4.5° (a); γN = 4.8° (b); γN = 5.0° (c); γN = 5.05° (d); γN = 5.1° (e); γN = 5.2° (f)). The numbers on
the basins indicate the period of the (LPS) and (C) denotes the chaotic behavior. One can see the main range — period 1 (CS)
synchronization remains the same in all six cases, so when the initial conditions of both pendula are close to each other,
then the parameters of the escapement mechanism have no influence on the pendula’s dynamics. For larger differences
in initial conditions one can observe (LPS) with different periods (in the range from 6T to 59T ) and chaotic behavior. As
it has been already mentioned all these phenomena are observed in the range of anti-phase synchronization observed for
identical masses of both pendula (see Fig. 21(c)). In Fig. 40(a) one can observe the coexistence of 11T and 23T , 11T remains
unchanged up to γN = 5.2, then in Fig. 48(b) 6T appears. In Fig. 40(c) 6T attractor is dominant, then for γN = 5.05 6T
disappears and 12T (possible period doubling bifurcation of 6T ), 30T and chaos (C) can be observed (Fig. 40(d)). Then for
γN = 5.05 (Fig. 40(e)) all previous states are replaced by 59T (LPS). In Fig. 40(f) two new LPS ranges appear: 13T (replacing
11T ) and 35T . The largest Lyapunov exponent of the chaotic attractors presented in Fig. 40(a)–(f) varies between 0.095 and
0.125.Most of (LPS) and (C) basins are small open sets of escapementmechanism parameters (practically small perturbation
leads to their disappearance and the system jumps to another coexisting attractor).
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Fig. 39. Poincare maps (ϕ2, ϕ̇2) for different (LPS) and chaotic attractors; m1 = 1.0 (kg), m2 = 3.105 (kg), l = g/4π2
= 0.2485 (m), M = 10.0 (kg),

cx = 1.53 (N s/m), kx = 3.94 (N/m), cϕ1 = 0.0083 × m1 (N s m), cϕ2 = 0.0083 × m2 (N s), MN1 = 0.075 × m1 (N m), MN2 = 0.075 × m2 (N m): (a)
γN = 4.9°, T = 6, (b) γN = 5.2°, T = 35, (c), γN = 5.1°, T = 59, (d) γN = 4.9°, chaotic behavior.

Table 2
Synchronous states observed in two coupled clocks.

Identical pendula – Complete synchronization: ϕ1(t) = ϕ2(t), ϕ1(t)− ϕ2(t) = 0
– Antiphase synchronization: ϕ1(t) = −ϕ2(t), ϕ1(t)− ϕ2(t) = π

Nonidentical pendula – Almost complete synchronization: the phase shift between ϕ1(t) and ϕ2(t) is close to zero (if l1 = l2 then
ϕ1(t) ≈ ϕ2(t))
– Almost antiphase synchronization: the phase shift between ϕ1(t) and ϕ2(t) is close to π ,
– For l1 = l2 long period synchronization during: ϕ1 − ϕ2 is a periodic function of t .

4.3. Discussion

In the considered systems of two clocks suspended on the horizontally movable beam (Eqs. (27), (28), (68) and (69))
one can observe the following types of synchronizations: (i) the complete synchronization during which the pendula’s
displacements fulfill the relation ϕ1(t) = ϕ2(t) and the phase shift between pendula’s displacements ϕ1(t) and 4ϕ2(t)
is equal to zero, (ii) the almost complete synchronization during the phase shift between pendula’ displacements ϕ1(t)
and ϕ2(t) is close to zero, (iii) antiphase synchronization during which the pendula’ displacements fulfill the relation
ϕ1(t) = −ϕ2(t) and the phase shift between the pendulum displacements is equal to π (180°), (iv) almost antiphase
synchronization during which the phase shift between the pendulum displacements is close to π (180°). For the pendula
with the same lengths in case (ii) pendula’s displacements fulfill the relation ϕ1(t) ≈ ϕ2(t). Note that types (i) and (iii) are
possible only for nonrobust case of identical pendulum masses (m1 = m2). For cases (ii) and (iv) pendula’s energy balance
looks differently as can be seen in Fig. 41(a)–(c) (discontinuousmodel) and Fig. 42(a, b) (continuousmodel). Additionally, for
the pendula with the same lengths there exists the possibility of long period synchronization during which the difference
of the pendula’s displacements ϕ1 − ϕ2 is a periodic function of time and chaotic behavior of the clocks’ pendula [45]. The
pendula with different lengths can oscillate with different periods and one can observe 1:2, 1:3, 2:3, etc. synchronizations.
The synchronous states of two coupled clocks are summarized in Table 2.
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Fig. 40. Basins of attraction of different types of synchronous states for m2 = 3.105; the numbers indicate the period of the (LPS), (C) shows chaotic
behavior. Parameters: γN = 4.5° (a); γN = 4.8° (b); γN = 5.0° (c); γN = 5.05° (d); γN = 5.1° (e); γN = 5.2° (f). Other parameters are the same as in
Fig. 39, initial values: x(0) = 0.0, ẋ(0) = 0.0, ϕi0 = Φ sinβi0, ϕ̇i0 = αΦ cosβi0 .

(i) Energy balance in the state of almost complete synchronization

In the state of complete synchronization the pendula’s displacements fulfill the relation ϕ1(t) = ϕ2(t), both dampers
dissipate the same amount of energy:

WDAMP
1 =

 T

0
cϕ ϕ̇2

1dt =

 T

0
cϕ ϕ̇2

2dt = WDAMP
2 ,

m2W SYN
1 = m2

 T

0
m1ẍl cosϕ1ϕ̇1dt = m1

 T

0
m2ẍl cosϕ2ϕ̇2dt = m1W SYN

2 ,

WDRIVE
1 = WDRIVE

2 .

(92)

After substituting the energy values satisfying Eq. (92) into Eqs. (44), Eqs. (44) are not contradictory equations only in two
cases: (i) masses of both pendula are equal (m1 = m2) and both pendula transmit the same amount of energy to the beam
(see Fig. 41(a)), (ii) synchronization energies W SYN

1,2 are equal to zero, i.e., both pendula dissipate the whole energy supplied
by the escapement mechanism (see Fig. 41(b)).
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Fig. 41. Energy balance schemes: (a) almost complete synchronization — both pendula drive the beam, (b) antiphase synchronization — beam at rest, (c)
almost antiphase synchronization — pendulum 1 drives the beam and supplies energy to pendulum 2.

In general case when m1 ≠ m2 and cx ≠ 0.0, instead of complete synchronization we observe almost complete
synchronizations during which the pendula’s displacements are not identical (but close to each other) and one gets the
following expressions for the considered energies

WDAMP
1 =

 T

0
cϕ ϕ̇2

1dt ≈

 T

0
cϕ ϕ̇2

2dt = WDAMP
2 ,

W SYN
1 =

 T

0
m1ẍl cosϕ1ϕ̇1dt ≈

 T

0
m2ẍl cosϕ2ϕ̇2dt = W SYN

2

(93)

which fulfills Eqs. (44). The scheme of the energy balance is similar to the one in Fig. 41(a).
(ii) Energy balance in the state of almost antiphase synchronization
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Fig. 42. Energy balances of the system (1, 2); (a) almost complete synchronization — both pendula drive the beam, (b) almost antiphase synchronization
— pendulum 1 drives pendulum 2 via the beam.

In the state of antiphase synchronization thependula’ displacements fulfill the relationϕ1(t) = −ϕ2(t) andbothdampers
dissipate the same amount of energy. The energies transmitted to the beam have opposite signs, i.e.,

WDAMP
1 =

 T

0
cϕ ϕ̇2

1dt =

 T

0
cϕ ϕ̇2

2dt = WDAMP
2 ,

m2W SYN
1 = m2

 T

0
m1ẍl cosϕ1ϕ̇1dt = −m1

 T

0
m2ẍl cosϕ2ϕ̇2dt = −m1W SYN

2 ,

WDRIVE
1 = WDRIVE

2 .

(94)

After substituting the energy values satisfying Eq. (94) into Eqs. (44), Eqs. (44) are not contradictory equations only when
the beam acceleration is zero, which implies the zero value of its velocity and acceleration(in the synchronization state of
the behavior of the system is periodic). This condition requires a balancing of the forces which act on the pendulum beam,
and this in turn requires that the pendula have the same mass. The scheme of the energy balance is similar to the one in
Fig. 41(b).

If the pendula’ masses are different, instead of antiphase synchronization we observe an almost-antiphase
synchronization, during which the oscillations of the pendula have different amplitudes and phase shift between these
oscillations is close, but not equal to π (180°). Hence

WDAMP
1 ≠ WDAMP

2 ,

W SYN
1 ≠ W SYN

2 .
(95)

The energy balance for the case of almost antiphase synchronization is shown in Fig. 41(c). Part of the energy supplied by
the escapement mechanism of pendulum 1 (let us assume that it has smaller mass) WDRIVE

1 is dissipated by the damper of
this pendulum (WDAMP

1 ) and the rest (W SYN
1 ) is transmitted to the beam. The damper of pendulum 2 dissipates the energy

WDRIVE
2 supplied by the escapement mechanism and energy (W SYN

2 ) transmitted from the beam (mathematically this energy
is negative). The damper of the beam dissipates the rest of the energyW SYN

1 :W SYN
beam = W SYN

1 − (−W SYN
2 ).

The system consisting of the beam and two self-excited pendula with van der Pol’s type of damping can perform
four types of synchronization: (i) complete synchronization (possible only for nonrobust case of identical masses of both
pendula), i.e., the periodic motion of the system during which the displacements of both pendula are identical (ϕ1(t) =

ϕ2(t)), (ii) almost complete synchronization of the pendula with different masses, in which phase difference between
the displacements ϕ1(t) and ϕ2(t) is small (not larger than a few degrees), (iii) antiphase synchronization (possible only
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Fig. 43. Three metronomes located on the plate which can roll on the base obtain a synchronous state with a phase difference ∆β = |β2 − β1| =

|β3 − β2| = |β1 − β3| = 2π/3.

for nonrobust case of identical masses of both pendula), i.e., the periodic motion of the system, during which the phase
difference between the displacements ϕ1(t) and ϕ2(t) is equal to π (180°), (iv) almost-antiphase synchronization, during
which the phase difference between the displacements ϕ1(t) and ϕ2(t) is close to π (180°) and the amplitude of oscillations
of both pendula are different.

The observed behavior of the system (68), (69) can be explained by the energy expressions derived in Section 3.5 and
taking into consideration Eq. (90), (91). The examples of the energy flow diagrams are shown in Fig. 42(a, b). In the state
(ii) both pendula drive the beam (transferring to it the part of the energy obtained from van der Pol’s dampers) as seen in
Fig. 40(a). In the case (iv) the pendulumwith largermass and smaller amplitude of oscillations transmits part of its energy to
the pendulum lower mass. The beammotion is negligibly small and the pendulum with lower mass reduces the amplitude
of vibration of the pendulum with larger mass, acting on the classical model of the dynamic damper.

We identified two reasons for the sudden change of the attractor in system (68), (69); (i) loss of stability of one type
of synchronization after which the system trajectory jumps to the coexisting synchronization state, (ii) inability of van der
Pol’s damper of one of the pendula energy necessary to drive the second pendulum.

We give evidence that two coupled clocks can show chaotic behavior, i.e., uncorrelated motion of the pendula. We show
that in the wide range of the system parameters the system exhibits multistability. The basins of attraction of the coexisting
various (LPS) and chaotic attractors are small so practically any perturbation or fluctuation of the system parameters can
result in the jumps of the system between different attractors. The described phenomena seem to be robust as they exist in
the wide range of the system parameters.

5. Synchronization of n clocks

5.1. Experimental synchronization of metronomes

In our experiments we observed the oscillations of n metronomes (mass of each one 0.119 (kg)) located on a plate. The
plate rests on light polished rolls which can roll on the parallel smooth base and is connected by the spring to the vertical
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Fig. 44. Time series of 11 metronomes located on the plate which can roll on the base; N indicates a number of periods of oscillations (t = 2Nπ/α): (a)
five clusters configuration, βII = 0.475π, βIII = 0.791π , (b) three clusters configuration, βII = 0.53π .

Fig. 45. Two metronomes located on the plate which can roll on the base: (a) complete synchronization, (b) antiphase synchronization. Arrows indicate
additional masses added to differentiate the total masses of the metronomes’ pendula.

base. Metronomes areWittner’s Taktell-Piccolino (Series 890). The frequency of the metronome is adjusted by changing the
position of a mass on the metronome’s pendulum bob. The metronomes’ standard settings range from 40 ticks per minute
(largo) to 208 ticks perminute (prestissimo). For the performedmeasurements the highest standard frequency settings have
been used. They corresponds to 104 oscillations per minute as the metronomes tick twice per cycle.

Pendulum metronomes act in the same way as pendulum clocks. The energy is supplied to each metronome by a hand
wound spring and their oscillations are controlled by the escapementmechanismdescribed in Section 2.2. The speed camera
(Photron APX RS with the film speed at 1500 frames per second) has been used to observe the motion of the metronomes.

In the first case three metronomes have been located on the plate. Fig. 43 shows that the metronomes perform steady
state periodic oscillations with a constant phase difference∆β = |β2 − β1| = |β3 − β2| = |β1 − β3| = 2π/3.

In Fig. 44(a, b) time series of 11 metronomes located on the elastic plate which can roll on the base are shown. N
indicates a number of periods of oscillations, i.e., t = 2Nπ/α. Fig. 44(a) presents five cluster symmetrical configuration
(nI = 1, nII = 4, nIII = 1, nIV = 1, and nV = 4), and Fig. 44(b) three cluster symmetrical configuration with respectively
nI = 1, nII = 5, and nIII = 5 pendula.

In Fig. 45(a, b) we show the simple experimental confirmation of the stability of both synchronization configurations.
Two metronomes located on the elastic plate which can roll on the base obtain complete synchronization (Fig. 45(a))
and antiphase synchronization (Fig. 45(b)). The masses of metronomes’ pendula are slightly different as the small masses
(indicated by arrows) have been added to one of them. Notice that in the case of antiphase synchronization the plate is not
at rest (as in the case of identical pendula), but oscillates with a small amplitude. There is also a small difference in pendula
amplitudes.

Typical configurations for the system of three clocks have been also observed in the experiments with metronomes
described in Fig. 46(a, b). Three metronomes (with different masses of pendula) located on the plate which can roll on
the base can show the symmetrical synchronization with phase shift βII = βIII = 120° (Fig. 46(a)) and antiphase
synchronization of the left metronome with the cluster consisting of the center and right metronomes (Fig. 46(b)). In the
second case the mass of the left pendulum is equal to the sum of the masses of the central and right pendula.

Generally, in the case of light base (mass 0.058 (kg)) with smooth surface we observe complete synchronization of
all metronomes. In this case the damping in the system is very low and the metronomes ticks destabilize antiphase
synchronizations (Pantaleone, 2002). Formore damped system (rough surface of heavier base of themass 2 (kg)) we observe
the occurrence of three or five clusters of synchronized metronomes.
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Fig. 46. Three metronomes located on the plate which can roll on the base: (a) symmetrical synchronization with phase shift βII = βIII = 120°, (b)
antiphase synchronization of the left metronome with the cluster of the center and right metronomes (the mass of the left pendulum is equal to the sum
of the masses of the center and right pendula).

Fig. 47. The model of n pendulum clocks hanging from an elastic horizontal beam.

5.2. The model

In the modeling of the dynamics of n coupled clocks we consider the generalization of the model described in Section 3.4
shown in Fig. 47. The beam of mass M can move in the horizontal direction x with the viscous friction given by damping
coefficient cx. One side of the beam is attached to the base through the springwith stiffness coefficient kx. The beam supports
n identical pendulum clocks with pendula of the same length l and different massesmi(i = 1, 2, . . . , n). The position of the
i-th pendula is given by a variable ϕi and its oscillations are damped by viscous friction described by damping coefficient
cϕ i (these dampers are not shown in Fig. 47). The beam is considered as a rigid body so the elastic waves along it are not
considered. We describe the phenomena which take place far below the resonances for both longitudinal and transverse
oscillations of the beam.

The system equations can be written in the form of Euler–Lagrange equations:

mil2ϕ̈i + miẍl cosϕi + cϕi ϕ̇i + migl sinϕi = MDi , (96)
M +

n
i=1

mi


ẍ +

n
i=1


milϕ̈i cosϕi − milϕ̇2

i sinϕi

+ cxẋ + kxx = 0. (97)

The clock escapement mechanism represented by momentum MDi provides the energy needed to compensate the energy
dissipation due to the viscous friction cϕ i and to keep the clocks running. This mechanism acts in the way described in
Section 2.2, i.e., if ϕi < γN then MDi = MNi and when ϕi < 0 then MDi = 0, where γN and MNi are constant values which
characterize the mechanism. For the second stage one has for −γN < ϕi < 0MDi = −MNi and for ϕi > 0MDi = 0. In the
undamped (cϕ i = 0) and unforced (MDi = 0) case when the beamM is at rest (x = 0) each pendulum oscillates with period
T equal to 1.0 (s) and frequency α = 2π(s−1).

After the initial transient the pendula perform the periodic oscillations so the solution of Eq. (96) can be approximately
described as:

ϕi = Φi sin (αt + βi) , (98)
whereΦi are constant. Assuming that the pendulum amplitudeΦi are small one can linearize Eq. (97) as follows:

M +

n
i=1

mi


ẍ + cxẋ + kxx +

n
i=1


milϕ̈i − milϕ̇2

i ϕi


= 0, (99)

or substituting Eq. (98) into Eq. (99)
M +

n
i=1

mi


ẍ + cxẋ + kxx =

n
i=1


milα2Φi sin(αt + βi)+ milα2Φ3

i cos2(αt + βi) sin(αt + βi)

. (100)
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Fig. 48. The synchronization configurations for three pendula; m = 1 (kg), l = g/4π2 (m), cϕ = 0.01 (N s m), M = 1 (kg), cx = 0.1M (N s/m),
kx = M (N/m), MN = 0.075 (N m), γN = π/36: (a) (SS) with phase difference ∆β = 2π/3;β10 = 0, β20 = 2π/8, β30 = 2π/4 (b) (CS):
β10 = 0, β20 = 2π/24, β30 = 2π/18.

Taking into consideration the relation cos2 α sinα = 0.25(sinα + 3 sin 3α), and denoting

U = M +

n
i=1

mi, F1i = milα2(Φi + 0.25Φ3
i ), F3i = 0.75milα2Φ3

i , (101)

we have

Uẍ + cxẋ + kxx =

n
i=1

(F1i sin(αt + βi)+ F3i sin(3αt + 3βi)) . (102)

Assuming the small value of damping coefficient cx Eq. (102) can be rewritten in the following form

x =

n
i=1

(X1i sin(αt + βi)+ X3i sin(3αt + 3βi)) , (103)

where X1i, X3i and βi are constant. Right hand side of Eq. (103) represents the force with which n pendula act on the beam
M . Eq. (103) allows the determination of the beam acceleration ẍ and (after integration) of its velocity ẋ and displacement x.
Notice that this force consists only of the first and the third harmonics. Later this propertywill be essential in the explanation
why in the system (96), (97) one observes only configurations consisting of three and five clusters of synchronized pendula.

It should be mentioned here that our theoretical results are based on the approximation of the pendula motion given
by Eq. (98). In numerical simulations of Eq. (96), (97) we got: ϕi = 0.144 sin(αt + βi) + 0.0033 sin 3(αt + βi) + 6.75 ∗

10−4 sin 5(αt + βi)+ 3.2 ∗ 10−4 sin 7(αt + βi)+ · · · which clearly shows that higher harmonics are small and have small
(negligible) influence on the system (96), (97) motion.

5.3. Numerical simulations

5.3.1. Identical clocks
In our numerical simulations we consider m = 1 (kg), l = g/4π2 (m), and cϕ i = cϕ = 0.01 (N s m) so the frequency

of pendula’s oscillations α is equal to 2π . The stiffness kx and damping cx coefficients are assumed to be proportional to the
beam mass M . The clock mechanism parameters are assumed to be MN = 0.075 (N m) and γN = π/36. We assume that
the initial conditions for the pendula are given by the initial value of βi0, i.e., ϕi0 = Φ sinβi and ϕ̇i0 = αΦ cosβi0. For the
given parameters of the pendula and the clock mechanismΦ = 0.3.

(a) Three clocks (n = 3)
In Fig. 48 we plot the position of each pendulum given by Eqs. (96), (97) in the phase space ϕi, ϕ̇i at the time when the

first pendulum is moving through the equilibrium position ϕ1 = 0 with the positive velocity ϕ̇i > 0. The points indicate the
transients leading from the given initial conditions to the final configuration indicated in bold. After the initial transients
the pendula perform periodic oscillations (which are visible in Fig. 48 by a single point for each pendulum) with the same
amplitude (as the distance of each point to the origin (0, 0) is equal). The oscillations of the pendula differ only by the phase
differences βi.

Fig. 48(a, b) shows two possible configurations for the system (96), (97) with three pendula. In the first configuration
(shown in Fig. 48(a)) there is a constant phase difference ∆β = |β2 − β1| = |β3 − β2| = |β1 − β3| = 2π/3 between the
pendula. We call this configuration symmetrical synchronization (SS). In Fig. 48(b) one observes complete synchronization
(CS). Besides these configurations we observed also the desynchronous behavior (DSB) of all pendula. In DSB regime the
phase difference between pendula is not constant and is changing chaotically. All the observed steady states are stable as
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Fig. 49. The steady states of Eqs. (96), (97) for different values of parametersM and kx;m = 1 (kg), l = g/4π2 (m), cϕ = 0.01 (N s m), cx = 0.1M (N s/m),
MN = 0.075 (N m), γN = π/36, β10 = 0, β20 = π/8, β30 = π/9, x0 = ẋ0 = 0. (SS), (CS) and (DSB) are indicated respectively in navy blue, white and red
colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 50. The basins of attraction of the possible steady states of Eqs. (96), (97) in the β20 − β30 plane; m = 1 (kg), l = g/4π2 (m), cϕ = 0.01 (N s m),
M = 1 (kg), cx = 0.1M (N s/m), kx = M (N/m), MN = 0.075 (N m), γN = π/36, β10 = 0, x0 = ẋ0 = 0. The basins of (SS), (CS) and (DSB) are indicated
respectively in navy blue, white and red colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

the solution of the variational equation (87) decays. They can be observed in a wide range of the control parametersM and
kx as shown in Fig. 49, where (SS), (CS) and (DSB) are indicated respectively in black, white and gray colors. In the calculation
shown in Fig. 49 we assumed the following initial conditions β10 = 0, β20 = π/8, β30 = π/9, ẋ0 = 0.

In Fig. 50we present the basins of attraction of the possible steady states of the system (96), (97) inβ20−β30 plane, where
β20 and β30 represent the initial positions of the second and third pendula. Other initial conditions have been assumed to
be equal to zero, i.e., β1 = 0, x0 = ẋ0 = 0. The basins of (SS), (CS) and (DSB) are indicated respectively in black, white and
gray colors.

(b) n clocks (n > 3)
In what follows, we show the examples of typical configurations in the system of more than 3 pendula. Fig. 51(a)–(c)

shows three possible configurations for the system (96), (97) with six pendula. The points indicate the transients leading
from the given initial conditions to the final configuration indicated in bold. In the first configuration (shown in Fig. 51(a))
there are three clusters (pendula 1,2,3,4 and 5,6) of two synchronized pendula. The phase difference between the pendula in
different clusters is equal to∆β = 2π/3. Three pairs of pendula synchronized in antiphase (the phase difference between
pendula in each pair is equal to ∆β = π ) are shown in Fig. 51(b). Pendula 1, 2 and 3 are respectively in antiphase with
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Fig. 51. Synchronization configurations for six pendulums; m = 1.0 (kg), l = 0.2489 (m), cϕ = 0.01 (N s m), MN = 0.075 (N m), γN = π/36; (a)
symmetrical synchronization of three clusters of two pendula, phase difference between clustersM = 14 (kg), cx = 2.34 (N s/m), kx = 5.53 (N/m),∆β =

2π/3; β10 = 0.017, β20 = 1.74, β30 = 2.44, β40 = 3.49, β50 = 4.19, β60 = 5.24; (b) three pairs of pendula synchronized in antiphase; M = 140 (kg),
cx = 20.0 (N s/m), kx = 55.3 (N/m), β10 = 0.017, β20 = 1.06, β30 = 2.09, β40 = 3.23, β50 = 4.19, β60 = 5.305; (c) complete synchronization of six
pendula;M = 14 (kg), cx = 2.34 (N s/m), kx = 5.53 (N/m)β10 = 0.017, β20 = 0.17, β30 = 0.52, β40 = 0.70, β50 = 0.87, β60 = 1.22; x0 = ẋ0 = 0.

pendula 4, 5 and 6. The phase difference between pendula in different pairs depends on the initial conditions. In Fig. 51(c)
one observes complete synchronization (CS). For even nwe have not observed (DSB) of all pendula.

In Fig. 52(a)–(d) we plot the position of each of n = 11 pendula in the phase space ϕi, ϕ̇i at the time when the first
pendulum is moving through the equilibrium position ϕ1 = 0 with the positive velocity αϕ̇1 > 0. Fig. 52(a) shows the
configuration of three clusters with respectively nI = 2, nII = 4, and nIII = 5 pendula. The pendula in each cluster are
synchronized. Fig. 52(b) shows the configuration with five clusters of respectively nI = 1, nII = 3, nIII = 2, nIV = 1,
and nV = 4 pendula. In Fig. 52(c) the special case of the symmetrical three clusters configuration with respectively
nI = 1, nII = 5, and nIII = 5 pendula is shown. Fig. 52(d) presents the symmetrical configuration of five clusters
(nI = 1, nII = 4, nIII = 1, nIV = 1, and nV = 4).

For all considered odd n besides the above configurations we have observed; (i) a complete synchronization,
(ii) desynchronous behavior of all pendula. For even n additionally; (iii) the anti-phase synchronization in pairs have been
observed. In the considered range of nwe have not observed other stable cluster configuration.

(c) Influence of the beam motion on the pendula’s oscillations
The synchronization between the pendula can be obtained as a result of the interplay between the period of oscillations

of the pendula, the amplitude of the beam oscillations and the phase difference between the motions of the pendula and
the beam. In the simplest example of one pendulum hanging from the beam, the beam motion which is in phase (out of
phase) with the motion of the pendulum increases (decreases) the period of oscillations of the pendulum. In the case of n
pendula hanging from the beam, the beammotion can temporarily increase or decrease their period of oscillations allowing
synchronization. As in the case of two pendula (see Section 4) the energy is transmitted between pendula via the beam.
One should notice here that the described mechanism explains why it is impossible to observe the existence of two groups
of pendula with unequal number of members which synchronize in anti-phase, i.e., due to the unequal total mass of the
pendula in each group the influence of the beam motion on each group cannot be the same.

To give an explanationwhy only three and five cluster configurations are observedwe consider a horizontal displacement
of the beam given by Eq. (103). Besides the local minimum for the n/2 pairs of pendula synchronized in anti-phase (for even
n) the beam displacement x(t) given by Eq. (103) has local minima in two cases; (i) when the sum of the first harmonic
components is equal to zero, (ii) when the sumof the first and the third harmonic components is equal to zero. One can show
that the conditions (i) and (ii) guarantee the local minima of energy of the undamped and non-excited system. Neglecting
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Fig. 52. Cluster configurations for n = 11 pendula; m = 1 (kg), l = g/4π2 (m), cϕ = 0.01 (N s m), M = 1 (kg), cx = 0.1 (N s/m), kx = 1 (N/m), MN =

0.075 (N m), γN = π/36: (a) three cluster configuration; nI = 2, nII = 4, nIII = 5, (b) five cluster configuration; nI = 1, nII = 3, nIII = 2, nIV = 1, nV = 4,
(c) symmetrical three cluster configuration; nI = 1, nII = 5, and nIII = 5, (d) symmetrical five cluster configuration; nI = 1, nII = 4, nIII = 1, nIV = 1, and
nV = 4.

damping and excitation in Eqs. (96), (97), i.e., assuming that
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where Ep and Ex represent respectively the energy of n pendula and the energy of the motion in x direction. Under the
assumption (98) the energy of n pendula Ep is the same for all pendula configurations. Eqs. (97) and (103) allows us to write
the energy of the motion in the direction x as follows
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Local minima of Eq. (105) for the cases (i) and (ii) are clearly visible. It is possible to show that the first case occurs for three
cluster configuration and the second one for five cluster configuration. The lack of other harmonics components in Eqs. (103)
and (105) shows why the configurations with a number of clusters different from 3 or 5 are not observed.

(i) Three cluster configuration
Consider three cluster configuration with respectively nI , nII and nIII(nI ≤ nII ≤ nIII) pendula in the successive cluster.

The sum of the first harmonic components in Eq. (105) is equal to zero when the angles βII and βIII fulfill the relation:

nI + nII cosβII + nIII cosβIII = 0, (106)
nII sinβII + nIII sinβIII = 0.



M. Kapitaniak et al. / Physics Reports 517 (2012) 1–69 59

The solution of Eq. (106) exists when nI + nII > nIII . In the symmetrical case nII = nIII and βIII = 2π − βII Eq. (106) reduces
to

cosβII =
−nI

2nII
(107)

for which the solution exists if nI ≤ 2nII . Our numerical results show that in the case of three cluster configuration the clocks
oscillate with the frequency larger than the frequency of the uncoupled clock. We observed α ≈ 2π + 0.034.

(ii) Five cluster configuration
Five cluster configuration with respectively nI , nII , nIII , nIV and nV pendula in the successive cluster exists when the sums

of the first and the third harmonics components in Eq. (105) are equal to zero. In this case it is possible to show that the
angles βII–V fulfill the relation:

nI + nII cosβII + nIII cosβIII + nIV cosβIV + nV cosβV = 0 (108)
nII sinβII + nIII sinβIII + nIV sinβIV + nV sinβV = 0
nI + nII cos 3β II + nIII cos 3β III + nIV cos 3β IV + nV cos 3βV = 0
nII sin 3β II + nIII sin 3βIII + nIV sin 3βIV + nV sin 3βV = 0.

In the symmetrical cluster configuration nII = nIV , nII = nV , βII = 2π − βV , βIII = 2π − βV Eq. (108) reduce to

nI + 2nII cosβII + 2nIII cosβIII = 0 (109)
nI + 2nII3 cosβII + 2nIII cos 3βIII = 0

In five cluster configuration the displacement of the beam x(t) (given by (103)) and energy Ex (given by Eq. (105)) are equal
to zero, i.e., in the linear approximation of system (96), (97) beam is at rest. In the numerical studies of Eqs. (96), (97) we
have observed very small oscillations of the beamwhich are due to the nonlinear terms (omitted in Eq. (103)) and the acting
of the escapement mechanism. In the case of five cluster configuration all pendula oscillate with the frequency nearly equal
to the frequency of the uncoupled clock. Our numerical results show that α ≈ 2π + 0.0001.

5.3.2. Nonidentical clocks
In this section we generalize the results of the previous section for the case of n non-identical pendulum clocks. It has

been assumed that the clocks under consideration are accurate, i.e., show exactly the same time, but can differ by the design
of the escapementmechanism and the pendulum. Particularly, we consider the pendula with the same period of oscillations
and different masses. Our main results shows that the phase synchronization of non-identical clocks is possible only when
three or five clusters are created. Contrary to the case of identical clocks this result holds for both even and odd number of
clocks. We derive the equations which allow the estimation of the phase differences between the clusters. We argue why
other cluster configurations are not possible.

In our numerical simulations Eqs. (96), (97) have been integrated by the Runge–Kutta method. For simplicity we have
assumed cx = kx = 0. The initial conditions have been set as follows; (i) for the beam x(0) = ẋ(0) = 0, (ii) for the pendula the
initial conditions ϕ1(0), ϕ̇1(0) have been calculated from the assumed initial phase differences βII and βIII (in all calculations
βI = 0 has been taken) using Eq. (98), i.e., ϕ1(0) = 0, ϕ̇1(0) = αΦ, ϕ2(0) = Φ sinβII , ϕ̇2(0) = αΦ cosβII , ϕ3(0) =

Φ sin(−βIII), ϕ3(0) = αΦ cosβIII (as it will be explained later the angles βI = β1 = 0, βII = β2, βIII = −β3 have been
introduced for better description of the symmetrical configurations). To prove the stability of the obtained configurations
we have used Eqs. (87).

(a) Three clocks (n = 3)
Generally, in the system with three pendulum clocks one can observe the following synchronization cases; (i) complete

synchronization, (ii) phase synchronizationwith the constant phase shifts between thependula, i.e.,ϕ1−ϕ2 = constant, ϕ2−

ϕ3 = constant . Antiphase synchronization can be observed only as the special case of (ii) and occurs when the sum of the
masses of two pendula (1 and 2) is equal to the mass of the third pendulum (3), saym1 +m2 = m3. In this case the first and
the second pendula create a cluster (ϕ1 = ϕ2) which oscillates in antiphase to the pendulum 3, i.e., ϕ1 = ϕ2 = −ϕ3.

Stable configurations of the pendula can be visualized in the followingmaps.Weplot the position of each pendulumgiven
by Eqs. (96), (97) (after decay of the transients) in the phase space ϕi, ϕ̇i at the time when the first pendulum is moving
through the equilibrium position ϕ1 = 0 with positive velocity ϕ̇1 > 0. After the initial transients the pendula perform
periodic oscillations, which are visible in such maps by a single point for each pendulum (for better visibility indicated as a
black dot). As the pendula oscillate with the same amplitude the distance of each point to the origin (0, 0) is equal. The lines
between these points and the origin create the angles which are equal to the angles of the phase differences βi between the
oscillations of the pendula. White circles around the group of pendula indicate that the cluster of the synchronized pendula
has been created.

The examples of the synchronized states of the system with three non-identical clocks are shown in Fig. 53(a)–(c).
Fig. 53(a) presents the pendula’s configuration obtained for beam mass M = 10.0 (kg) and different pendula masses:
m1 = 1.0 (kg), m2 = m3 = 2.0 (kg). As m2 = m3 and βII = βIII , one can observe symmetrical phase synchronization.
Phase differences βII = βIII = 104.5° are different from that obtained for the case of identical pendula masses m1 = m2 =
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Fig. 53. Synchronization configurations for three pendula; M = 10.0; (a) symmetrical synchronization of three pendula m1 = 1.0 (kg), m2 = m3 =

2.0 (kg), βI0 = 0°, βII0 = 60°, βIII0 = 240°, (b) unsymmetrical synchronization of three pendula m1 = 1.0 (kg), m2 = 1.75 (kg), m3 = 2.25 (kg), βI0 =

0°, βII0 = 60°, βIII0 = 240°, (c) full synchronization of three pendulam1 = 1.0 (kg),m2 = 1.75 (kg),m3 = 2.25 (kg), βI0 = 0°, βII0 = 25°, βIII0 = 305°.

m3 = 1.0 (kg) (Section 5.3.1) where we observed βII = βIII = 120°. In Fig. 53(b) we show the results for: m1 = 1.0 (kg),
m2 = 1.75 (kg), m3 = 2.25 (kg). Nonsymmetrical phase synchronization with phase differences: βII = 73°, βIII = 132°
has been observed. Finally, Fig. 53(c) shows the example of the complete synchronization observed for: m1 = 1.0 (kg),
m2 = 1.75 (kg), m3 = 2.25 (kg). Different configurations of the system (96), (97) have been obtained by setting various
initial conditions.

Phase differences βII and βIII can be approximately estimated on the base of the linear approximation derived in
Section 5.2. In the case of three clocks the sum of the forces acting on the beam M (the right side of Eq. (102)) is equal
to zero when:

F11 sinαt + F12 sinαt cosβII + F12 cosαt sinβII + F13 sinαt cosβIII − F13 cosαt sinβIII

+F31 sin 3αt + F32 sin 3αt cos 3βII + F32 cos 3αt sin 3βII + F33 sin 3αt cos 3βIII − F33 cos 3αt sin 3βIII = 0. (110)

In Eq. (110) the phase shift of pendulum 1 has been taken as zero (the reference point on the time axis t). Additionally, due
to the relation βII = β2 and βIII = −β3, symmetrical configuration of Fig. 53(a) is better visible as βII = βIII . After some
algebraic manipulations one gets:

sinαt(F11 + F12 cosβII + F13 cosβIII)+ cosαt(F12 sinβII − F13 sinβIII)+ sin 3αt(F31 + F32 cos 3βII + F33 cos 3βIII)

+ cos 3αt(F32 sin 3βII − F33 sin 3βIII) = 0. (111)

Eq. (111) showing the force acting on the beamM can be expressed as the sum of the first and third harmonics. Eq. (111) is
fulfilled for phase shifts βII and βIII , given by

F11 + F12 cosβII + F13 cosβIII = 0
F12 sinβII − F13 sinβIII = 0
F31 + F32 cos 3βII + F33 cos 3βIII = 0
F32 sin 3βII − F33 sin 3βIII = 0.

(112)

Eq. (112) have no solution. i.e., for the systemwith three clocks it is impossible to have both first and third harmonics of the
force acting on the beam equal to zero. The stable pendula configuration occurs when the first harmonic is equal to zero, so
the phase differences βII and βIII can be calculated from the first two equations:

F11 + F12 cosβII + F13 cosβIII = 0
F12 sinβII − F13 sinβIII = 0. (113)
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Fig. 54. Phase differences βII and βIII versus pendula masses; (a) contour map of βII versusm2 and m3 , (b) contour map of βIII versusm2 and m3 .

Dividing both sides of Eq. (113) by F11 and multiplying bym1 one gets

m1 + m2 cosβII + m3 cosβIII = 0,
m2 sinβII − m3 sinβIII = 0. (114)

To solve Eq. (114) we have been searching for the zero minimum of the following function:

H13 = (m1 + m2 cosβII + m3 cosβIII)
2
+ (m2 sinβII − m3 sinβIII)

2 . (115)

The function H13 represents the square of the amplitude of the first harmonic component of the force acting on the beam
M . Notice that the phase differences βII and βIII calculated from Eq. (115) do not depend on the models of escapement
mechanism and friction.

Our calculations show that for m1 = 1.0 (kg), m2 = 2.0 (kg), m3 = 2.0 (kg) the function H13(βIII , βII) is equal zero
for βIII = βII = 104.5°, i.e., the same values as numerically obtained from the numerical integration of Eqs. (96), (97)
(see Fig. 53(a)). For the parameters of Fig. 53(b) (m1 = 1.0 (kg), m2 = 1.75 (kg), m3 = 2.25 (kg)) one gets the same
agreement as H13min(βIII , βII) = H13(132°, 73°) = 0. The phase synchronization in the system (96), (97) occurs for the
phase difference βII and βIII given by Eq. (114) when the first harmonic component of the force acting on the beam M is
equal to zero. In this case the beam M is oscillating with the period three times smaller than the periods of the pendula’s
oscillations. The motion of the beam influences the oscillations’ periods of each pendula in the same way and in the steady
state these periods are equal, i.e., the condition for synchronization is fulfilled.

The properties of the solution of Eq. (114)are discussed in Fig. 54(a, b). The contour map showing the values of phase
differences βII and βIII form1 = 1.0 and different masses of the pendulam2 andm3 are shown in Fig. 54(a, b). In Fig. 54(a, b)
point A (m3 = 2.25 (kg), m2 = 1.75 (kg)) represents the configuration of Fig. 53(b) (βII = 73° and βIII = 132°) and point
B (m3 = 2.0 (kg), m2 = 2.0 (kg) and βII = βIII = 104.5°) — this configuration shown in Fig. 54(a). Notice that starting
from the symmetrical configuration (point B) due to the simultaneous decrease of valuem3 and increase of valuem2, phase
difference βII tends to 180° and phase difference βIII tends to zero. In the limit case – point C – pendula massm1 = 1.0 (kg)
and m3 = 1.5 (kg) create a cluster oscillating in the antiphase to the pendulum mass m2 = 2.5 (kg) (equal to the mass of
the created cluster) as can be seen in Fig. 55(b). When massm2 is larger than the sum of the massesm1 + m3 (white region
in Fig. 54(a, b)) Eq. (114) has no solution and instead of phase synchronization, the complete synchronization is observed for
all initial conditions. Let us start again with the symmetrical configuration of Fig. 55(a) (m2 = m3 = 2.0 (kg)) and decrease
the values of m2 = m3 and observe the values of phase differences βII = βIII increase towards π (180°). In the limit case
(point F) pendula mass m2 = 0.5 (kg) and m3 = 0.5 (kg) create a cluster which oscillates in the antiphase with pendulum
massm1 = 1.0 (kg) as shown in Fig. 55(c). On the other hand, with the increase of the values ofm2 = m3, phase differences
βII = βIII decrease (for example to 98.5° for m2 = m3 = 3.0 (kg)- point G in Fig. 54(a, b)). In the limit as m2 = m3 tends to
infinity, βII = βIII tends to 90°— the corresponding configuration is shown in Fig. 55(d).

One can conclude that the phase synchronization can occur when the mass of the largest pendulum is smaller than the
sum of the masses of two other pendula. Ifm1 > m2 andm1 > m3 one gets

m1 ≤ m2 + m3. (116)

Relation (116) gives the necessary condition for the phase synchronization in the system with three pendulum clocks.
Notice that the method of the phase shift estimation (Eqs. (110)–(115)) and particularly necessary condition (116),

derived for three pendula, can be generalized to any number of pendula synchronized in three clusters. In this case one
can rewrite condition (116) in the form:

m1 = m2 + m3, (117)

where m1 ,m2 andm3 are respectively the sum of pendula’s masses in the first, second and third cluster.
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Fig. 55. Synchronization configurations of three pendula for various values of m2 and m3; (a) m3 = m2 = 2.0 (kg), (b) m3 = 1.5 (kg), m2 = 2.5 (kg), (c)
m3 = m2 = 0.5 (kg), (d)m3 = m2 = 100.0 (kg).

(b) Four clocks (n = 4)
In the systemwith four pendulum clocks one can observe two types of synchronization; (i) the complete synchronization

of all pendula (pendula oscillate in antiphase with the oscillations of the beam), (ii) the phase synchronization between a
cluster of two synchronized pendula and two other pendula (two clusters with one pendulum in each of them). In the case
of phase synchronization different pendula can create the cluster (there are six different possibilities: 1+2, 1+3, 1+4, 2+

3, 2 + 4, 3 + 4). The necessary condition for the existence of particular configuration (117) states: the mass of the largest
cluster (with one or two pendula) has to be smaller than the sum of two other clusters’ masses.

Consider a fewexamples of the phase synchronization for the beammassM = 10.0 and four pendulamassm1 = 1.0 (kg),
m2 = 1.75 (kg), m3 = 2.25 (kg),m4 = 2.0 (kg). For these parameters the above condition of the existence of cluster (117)
is fulfilled by three pairs of pendula: 1 + 2, 1 + 3 and 1 + 4, The corresponding configurations are shown in Fig. 56(a)–(c).
The same phase differences as observed in Fig. 56(a)–(c) can be calculated from the function H13 given by Eq. (115). Notice
that in this case the cluster has to be considered as a single pendulum with mass equal to the total mass of the pendula in
the cluster.

(c) Five clocks (n = 5)
In the system with five pendulum clocks we observed three different types of synchronization: (i) complete

synchronization of all pendula, (ii) phase synchronization of three clusters and (iii) phase synchronization of five pendula.
The examples of synchronization configurations for the system with five pendulum clocks are shown in Fig. 57(a)–(d).

Fig. 57(a) presents the results obtained for: M = 10.0 (kg), m1 = m2 = m3 = 1.0 (kg), m4 = 0.75 (kg), m5 = 1.25 (kg).
Observe the phase synchronization with the following phase differences: βII = 124.5°, βIII = 162°, βIV = 71°, βV = 77°.
In this configuration the beam M is in rest. Notice that contrary to the case of identical clocks (Section 5.3.1) the obtained
configuration is unsymmetrical. The configuration obtained for the same parameter values but different initial phases is
shown in Fig. 57(b). The two clusters with masses: (m1 + m4) = 1.75 (kg), (m2 + m3) = 2.0 (kg) and pendulum 5
(m5 = 1.25 (kg)) are phase synchronized. The phase differences are respectively βII = 142° and βIII = 98°. Different three
clusters’ configurations are show in Fig. 57(c, d). Fig. 57(c) shows the configuration of the clusters which consist respectively
of pendula 1 and 3 (m1 + m3 = 3 (kg)), pendulum 4 (m4 = 0.75 (kg)) and pendula 2 and 5 (m2 + m5 = 2.25 (kg)). The
phase differences between the clusters are given by βII = 80° and βIII = 161°. The configuration of the clusters consisting
of pendulum 1 (m1 = 1.0 (kg)), pendula 2 and 4 (m2 + m4 = 1.75 (kg)) and pendula 3 and 5 (m3 + m5 = 2.25 (kg)) with
phase differences βII = 72° and βIII = 133° is shown in Fig. 57(d). The last possible configuration with clusters consisting
of pendulum 1 (m1 = 1.0 (kg)), pendula 2 and 4 (m2 + m4 = 2.0 (kg)), pendula 3 and 5 (m3 + m5 = 2.0 (kg)) and phase
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Fig. 56. Synchronization configurations for four pendula: M = 10.0 (kg); (a) pendula m1 = 1.0 (kg), m2 = 1.75 (kg) form the cluster, βI0 = 0°, βII0 =

73°, βIII0 = 130°, βIV0 = 270°, (b) pendula m1 = 1.0 (kg), m4 = 2.0 (kg) form the cluster, βI0 = 0°, βII0 = 73°, βIII0 = 130°, βIV0 = 340°, (c) pendula
m1 = 1.0 (kg),m3 = 2.25 (kg) form the cluster, βI0 = 0°, βII0 = 140°, βIII0 = 340°, βIV0 = 220°.

differences βII = 104.5° and βIII = 104.5° has been already shown in Fig. 53(a). Other three cluster configurations are either
equivalent to these presented in Fig. 57(a)–(c) and 3(a) or do not fulfill condition (117). (In this case where m1 ,m2 and m3
indicate the total masses of each of three clusters).

Phase differences βII , βIII , βIV and βV can be approximately estimated on the base of the linear approximation derived in
Section 5.3.1 In the case of five pendulum clocks the forces acting on the beamM are equal to zero when:

F11 + F12 cosβII + F13 cosβIII + F14 cosβIV + F15 cosβV = 0
F12 sinβII − F13 sinβIII + F14 sinβIV − F15 sinβV = 0
F31 + F32 cos 3βII + F33 cos 3βIII + F34 cos 3βIV + F35 cos 3βV = 0
F32 sin 3βII − F33 sin 3βIII + F34 sin 3βIV − F35 sin 3βV = 0.

(118)

Contrary to the case with three clocks (112) now we have four equations with four unknown phase differences βII , βIII , βIV
and βV and it is possible to find the solution which fulfills all equations (118). For such values of βII , βIII , βIV and βV both the
first and the third harmonic of the force acting on the beam M vanish and the beam is in rest. Dividing the first two of Eq.
(118) by F11 and the other two by F31and multiplying all equations bym1 one gets:

m1 + m2 cosβII + m3 cosβIII + m4 cosβIV + m5 cosβV = 0
m2 sinβII − m3 sinβIII + m4 sinβIV − m5 sinβV = 0
m1 + m2 cos 3βII + m3 cos 3βIII + m4 cos 3βIV + m5 cos 3βV = 0
m2 sin 3βII − m3 sin 3βIII + m4 sin 3βIV − m5 sin 3βV = 0.

(119)

Eq. (119) have been solved by the method of searching for the zero minimum of the functions H15 and H35:

H15 = (m1 + m2 cosβII + m3 cosβIII + m4 cosβIV + m5 cosβV )
2

+ (m2 sinβII − m3 sinβIII + m4 sinβIV − m5 sinβV )
2

H35 = (m1 + m2 cos 3βII + m3 cos 3βIII + m4 cos 3βIV + m5 cos 3βV )
2

+ (m2 sin 3βII − m3 sin 3βIII + m4 sin 3βIV − m5 sin 3βV )
2 .

(120)

The functionsH15 andH35 represent respectively the square of the amplitude of the first and the third harmonic components
of the force acting on the beam M . Notice that the phase differences βII , βIII , βIV and βV calculated from Eq. (119) do not
depend on the models of the escapement mechanism and friction.
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Fig. 57. Synchronization configurations of five pendula:M = 10.0 (kg); (a)m1 = m2 = m3 = 1.0 (kg),m4 = 0.75 (kg),m5 = 1.25 (kg); (a) configuration
of five clusters, (b) configuration of three clusters mass 1.75, 2.0, 1.25 (kg), (c) configuration of three clusters of the following masses 2.0, 0.75, 2.25 (kg),
(d) configuration of three clusters of the following masses 1.0, 1.75, 2.25 (kg).

The dependence of the phase differences βII , βIII , βIV and βV , i.e., the values for which functions H15 and H35 have zero
minimum, on the parameters m1, m2, m3, m4 and m5 is partially described in Fig. 58(a)–(d). To reduce the dimensionality
and allow the visualization we consider m1 = m2 = m3 = 1.0 (kg) (three identical pendula), and allow m4 and m5 to
vary in the interval [0.0, 1.5]. The contour maps of βII , βIII , βIV and βV are shown respectively in Fig. 58(a)–(d). The phase
differences βII and βIII are shown in the interval [90°, 180° ] and βIV , βV in the interval [0°, 90° ]. In this a few characteristic
points are indicated. Point A (m4 = 0.75 (kg), m5 = 1.25 (kg)) represents the phase synchronization of five pendula:
m1 = m2 = m3 = 1.0 (kg), m4 = 0.75 (kg), m5 = 1.25 (kg), with phase differences given by: βII = 124.5°, βIII = 162°,
βIV = 71°, βV = 77° (this configuration is shown in Fig. 57(a)). On the line m4 = m5 the symmetrical configurations are
located. The symmetrical configuration of five identical clocks is indicated by point B. Point C (m5 = m4 = 0.75 (kg)) is
characteristic for the configuration for m1 = m2 = m3 = 1.0 (kg) and m4 = m5 = 0.75 (kg) with phase differences
βII = βIII = 145.5° and βIV = βV = 65.5°. The configuration of the point D (m5 = m4 = 0.5 (kg)) is shown in
Fig. 59(a). The phase differences for pendula 2 and 3 (m2 = m3 = 1.0 (kg)) are equal to βII = βIII = 180°, and
for pendula 4 and 5 βIV = βV = 0°. It is a limit case in which two clusters of two and three pendula, but with the
same mass m1 + m4 + m5 = m2 + m3 = 2.0 (kg), are in antiphase to each other. Point E represents the system with
m5 = m4 = 0.0, i.e., the system with three clocks, m1 = m2 = m3 = 1.0 (kg) and phase differences βII = βIII = 120°.
Point F (m5 = m4 = 1.5 (kg)) describes the configuration for m2 = m3 = 1.0 (kg), m4 = m5 = 1.5 (kg) and phase
differences βII = βIII = 143° and βIV = βV = 78°. Observe that with the further increase of the masses of pendula 4 and 5,
i.e., form5 = m4 → ∞, phase differences βIV = βV → 90°, so pendula 4 and 5 oscillate in antiphase, and phase differences
βII = βIII → 120°. In this case we have the co-existence of two configurations; two large pendula with equal masses
m5 = m4 oscillate in the antiphase and other pendula with masses m1 = m2 = m3 = 1.0 (kg) are phase synchronized
with phase differences βII = βIII = 120° as shown in Fig. 59(b). Point G is the crossing point of the lines m4 = 1.5 − m5
and m4 = m5 − 1. It represents the system with m4 = 0.25 (kg) and m5 = 1.25 (kg), in which the phase difference of
pendulum 3 (m3 = 1.0 (kg)) is equal to βIII = 180° and this pendulum is in the antiphase to pendulum 1 (m1 = 1 (kg)).
Phase differences of pendula 2 (m2 = 1.0 (kg)) and 4 (m4 = 0.25 (kg)) are βII = βIV = 90°, which means that these
pendula create a cluster which is in antiphase to pendulum 5 (m5 = 1.0 (kg)) for which βV = 90°. This is a special case
when there are four clusters with antiphase synchronization in pairs — see Fig. 57(c). The symmetrical configuration to the
one described in Fig. 59(c) is shown in Fig. 59(d) and represented by point H in Fig. 58(a)–(d).

Similar contour maps can be obtained for different intervals of phase differences βII , βIII , βIV and βV . For some values of
the parameters m4 and m5 there exist more than one phase synchronization configurations of five clusters, i.e., m4 and m5
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Fig. 58. Contour maps of phase differences (a) βII , (b) βIII , (c) βIV , (d) βV , versus pendula massesm4 andm5; m1 = m2 = m3 = 1.0 (kg).

there exist more than one different set of phase differences βII , βIII , βIV and βV for which functions H15 and H35 have zero
minima.

The method of the phase shifts estimation derived for five pendula (Eqs. (118)–(120)) can be generalized to any number
of pendula synchronized in five clusters. Substituting the total masses of clusters m1−5 instead of pendulum masses m1−5
one gets the equations which allow the estimation of the phase shifts between clusters.

5.4. Discussion

It has been shown that besides the complete synchronization of all pendulum clocks and the creation of the pairs of the
pendulum clocks synchronized in the anti-phase (for even n), the pendula can be grouped either in three or five clusters only.
The pendula in the clusters perform complete synchronization and the clusters are in the form of the phase synchronization
characterized by a constant phase difference between the pendula given by (106), (108), (114) and (119).

The results of the numerical studies for n pendulum clocks show either the complete synchronization or the phase
synchronization in three or five clusters. To explain why other cluster configurations are not possible go back to the
approximation given by Eq. (102). The pendula act on the beam M with the force which consists only of the first and the
third harmonics of the pendula’s oscillations frequencyα. Three clusters configuration occurswhen the first harmonic of this
force is equal to zero and the system tends to five clusters configurationwhen both harmonics are equal to zero. This result is
exactly the same in the cases of identical and nonidentical clocks and is general for the problems of clocks’ synchronization.
Contrary to the case of identical clocks the clustering in three and five clusters is easily observable for both even and odd
numbers of the clocks. For an even number of clocks the creation of the pairs of clocks synchronized in the antiphase is
possible only in the special non-robust case of two groups of identical clocks. Due to the assumption (98) and the small
swings of the pendula (Φ < 2π/36) other harmonics do not exist (or are extremely small). One can expect the appearance
of other numbers of clusters, when the pendula’s swings are larger and their periodic oscillationswill be described by higher
harmonic components, but this is not the case of the pendula’s clocks.

We studied the systems with up to 100 clocks. It has been found that for larger n and randomly distributed differences of
pendula masses, three clusters configurations are more probable than five clusters configurations. As an example consider
the case of 20 clocks shown in Fig. 60. After the initial transient the pendula with randomly distributed masses mi =

1.0 ± 0.1 create three clusters with respectively 6, 7 and 7 pendula. Noticed that as described in Section 5.3 the beam
is oscillating with a small amplitude.
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Fig. 59. Synchronization configurations of five pendula; (a) antiphase configuration of two clusters of the mass 2.0 (kg) each, (b) coexistence of two heavy
pendula in antiphase with the configuration of three pendula mass 1.0 (kg) each, (c) coexistence of two pairs of two clusters in antiphase; (d) mirror image
of previous configuration.

Fig. 60. Synchronization of 20 clocks: mi = 1.0 (kg), li = 0.2485 (m), M = 10.0 (kg), kx = 118.4 (N/m), cx = 24.0 (N s/m). N on the parallel axis
indicated the number of periods of the pendula oscillations.

6. Conclusions

In the considered system of two clocks suspended on the horizontally movable beam we identified the following
types of synchronizations: (i) the complete synchronization during which the pendula’s displacements fulfill the relation
ϕ1(t) = ϕ2(t) and the phase shift between pendula’s displacements ϕ1(t) and ϕ2(t) is equal to zero, (ii) the almost
complete synchronization during which the pendula’s displacements fulfill the relation ϕ1(t)ϕ2(t) and the phase shift
between pendula’s displacementsϕ1(t) andϕ2(t) is close to zero, (iii) antiphase synchronization duringwhich the pendula’s
displacements fulfill the relation ϕ1(t) = −ϕ2(t) and the phase shift between the pendulum displacements is equal to π
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(180°), (iv) almost antiphase synchronization during which the phase shift between the pendula’s displacements is close to
180°. Additionally, for the pendula with the same lengths there exists the possibility of long period synchronization during
which the difference of the pendula’s displacements ϕ1 −ϕ2 is a periodic function of time and chaotic behavior of the clocks’
pendula [45] and the chaotic behavior. The pendula with different lengths can oscillate with different periods and one can
observe 1:2, 1:3, 2:3, etc. synchronizations. Note that types (i) and (iii) are possible only for nonrobust case of identical
pendulum masses (m1 = m2). The transfer of the energy from one clock to another through the beam has been identified
as the cause of the observed synchronous cases. For cases (ii) and (iv) pendula’s energy balance looks differently as can be
shown in Fig. 42(a, c).

The continuous model Eqs. (68), (69) in which the escapement mechanism is modeled by van der Pol’s type of damping
can explain the main features of the system, i.e., the transfer of energy through the beam. The consideration of the
discontinuous model (Eq. (27), (28)) gives more accurate results than the studies of the continuous model (68) and (69)
[8,37,40] as continuous model cannot take into account the possibility of switch-off of the escapement mechanism when
the pendula’s oscillations are too small.

In the array of non-identical pendulum clocks hanging from an elastically fixed horizontal beam one can also observe
the phenomenon of the synchronization. Besides the complete synchronization of all pendulum clocks, the pendula can be
grouped either in three or five clusters only. The pendula in the clusters perform complete synchronization and the clusters
are in the form of the phase synchronization characterized by a constant phase difference between the pendula given by
Eq. (114) for three pendula and (119) for five pendula. All the pendula’s configurations reported in this paper are stable
and robust as they exist for the given sets of system (96), (97) parameters which have positive Lebesgue measure. We give
evidence that the observed behavior is robust in the phase space and can be observed in real experimental systems. The
clustering in three or five clusters is possible for any number of pendulum clock n if the solution of Eq. (114) or Eq. (119)
exists. In the considered range of n = 100 the solution of at least one of these equations exists. It should be mentioned here
that it is easier to observe the clustering phenomena for an odd number of pendulum clocks.

In the considered case the clocks’ clustering phenomena take place far below the resonances for both longitudinal
and transverse oscillations of the beam when the displacements of the beam are very small. We can add that the similar
phenomena have been observed in the system of n pendula hanging from the string in which transversal and longitudinal
oscillations of the string are considered [35].

Finally, we briefly discuss the influence of noise on the synchronization of clocks. Noise is inevitably present in
experimental and natural systems. Generally noise may influence synchronization in different ways. Usually, it has a
degrading effect, e.g. inducing phase slips of phase-locked oscillators or resulting in an intermittent loss of synchronization.
On the other hand, when influencing all coupled systems in the same way, noise may play a constructive role in enhancing
synchronization (noise-induced synchronization) or, more generally, in inducingmore order [99]. Noise has been taken into
account in the construction of the pendulumclocks since XVII century. To reduce the effect on the seamotion on the accuracy
of the marine clocks, long heavy pendulums have been used. Going back to the Huygens’ experiment we can conclude that
it would be easier to perform it on the ship and with a stable sea conditions. In this case the sea oscillations influence the
oscillations of both clocks’ pendula in the same way inducing synchronizations. On the other hand in the case of rough sea
synchronization may not be observed at all as the changes of the sea conditions as too often (time necessary to achieve
synchronization is longer than intervals between changes of the sea conditions).

To conclude, we can state that the results presented in this review give evidence that Huygens in his famous experiment
was unable to observe antiphase synchronization as stated in his letters [5] but we give evidence that he was able to
observe an almost antiphase synchronization of two pendulum clocks. In his times the distinction between antiphase and
almost antiphase synchronization for the clock with similar masses of the pendula was impossible. At the end, it should be
mentioned that the analysis of coupled clocks has much more applications than in mechanics, especially biological clocks
and synthetic biology or various other coupled self-sustained oscillators in physiology, engineering (e.g. power grids, rotors
operating on the same base) etc.
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