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We study synchronization of a number of different pendulum clocks hanging from a
horizontal beam which can roll on the parallel surface. The results previously obtained for n
identical clocks [Czolczynski et al., Prog. Theor. Phys. 122 (2009), 1027] are generalized for
the case of non-identical clocks. Pendula have the same period of oscillations so the clocks are
accurate but have different masses. It has been shown that after a transient, different types
of synchronization between pendula can be observed; (i) the complete synchronization in
which all pendula behave identically, (ii) pendula create three or five clusters of synchronized
pendula. Contrary to the case of identical clocks antiphase synchronization in pairs is not
robust for an even number of clocks. We derive the equations for the estimation of the phase
differences between phase synchronized clusters. The evidence, why other configurations
with a different number of clusters are not observed, is given.

Subject Index: 034

§1. Introduction

The problem of the synchronization of clocks can be traced back to the Dutch
researcher Christian Huygens in the 17th century.1)–4) He showed that a couple of
mechanical clocks hanging from a common support had been synchronized. Huy-
gens had found the pendulum clocks swung in exactly the same frequency and out of
phase, i.e., in antiphase synchronization (phase difference equals π). After the exter-
nal perturbation, the antiphase state was restored within half an hour and remained
indefinitely.

Recently, Huygens’ experiment has attracted increasing attention from different
research groups.5)–14) Pogromsky et al.5) designed a controller for synchronization
problem for two pendula suspended on an elastically supported rigid beam. To ex-
plain Huygens’ observations Bennett et al.6) built an experimental device consisting
of two interacting pendulum clocks hanged on a heavy support which was mounted
on a low-friction wheeled cart. The device moves by the action of the reaction forces
generated by the swing of two pendula and the interaction of the clocks occurs due
to the motion of the clocks’ base. It has been shown that to repeat Huygens’ re-
sults, the high precision (the precision that Huygens certainly could not achieve) is
necessary. Senator7) developed a qualitative approximate theory of clocks’ synchro-
nization. This theory explicitly includes the essential nonlinear elements of Huygens’
system, i.e., escapement mechanisms but also includes many simplifications. An in-
teraction mechanism between two oscillators leading to exact antiphase and in-phase
synchronization has been described by Dilao.8) It has been shown that if two cou-
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pled nonlinear oscillators reach the antiphase or the in-phase synchronization, the
oscillation frequency is different from the frequency of the uncoupled oscillators.

A device mimicking Huygens’ clock experiment, the so-called “coupled pendula
of the Kumamoto University”,9) consists of two pendula whose suspension rods are
connected by a weak spring, and one of the pendula is excited by an external rotor.
The numerical results of Fradkov and Andrievsky10) show simultaneous approximate
in-phase and antiphase synchronization. Both types of synchronization can be ob-
tained for different initial conditions. Additionally, it has been shown that for small
difference in the pendula frequencies they may not synchronize.

A very simple demonstration device was built by Pantaleone.11) It consists of
two metronomes located on a freely moving light wooden base. The base lies on
two empty soda cans which smoothly roll on the table. Both in-phase and antiphase
synchronizations of the metronomes have been observed. Recently, Ulrichs et al.12)

have studied synchronization scenarios of coupled mechanical metronomes showing
the onset of synchronization for two, three, and 100 globally coupled metronomes.

In the previous papers12),13) we studied a synchronization problem for n identical
pendulum clocks hanging from an elastically fixed horizontal beam. It was assumed
that each pendulum performs a periodic motion which starts from different initial
conditions. We showed that after a transient different types of synchronization be-
tween pendula can be observed. The first type is in-phase complete synchronization
in which all pendula behave identically. In the second type one can identify the
groups (clusters) of synchronized pendula. We showed that only configurations of
three and five clusters are possible and derive algebraic equations for the phase dif-
ference between the pendula in different clusters. In the third type, which is possible
only for even n, one observes anti-phase synchronization in n/2 pairs of pendula.
Besides these synchronized states it is possible to observe the uncorrelated motion
of the pendula.

In this paper we generalize these results for the case of n non-identical pendu-
lum clocks. It has been assumed that the clocks under consideration are accurate,
i.e., show exactly the same time, but can differ by the design of the escapement
mechanism and the pendulum. Particularly, we consider the pendula with the same
period of oscillations and different masses. Our main result shows that the phase
synchronization of non-identical clocks is possible only when three or five clusters
are created. Contrary to the case of identical clocks this result holds for both even
and odd number of clocks. We derive the equations which allow the estimation of
the phase differences between clusters. We argue why other cluster configurations
are not possible.

The paper is organized as follows. In §2 we present our theoretical model
which describes the dynamics of n coupled non-identical pendulum clocks. Sec-
tion 3 presents the results of our numerical studies. We present typical examples
of stable phase synchronization in the considered system, associated with pendula
configurations and derive equations for estimation of the phase shifts between the
pendula. Here we give evidence why one can observe configurations of only three or
five clusters. Finally, we discuss why the other configurations are not possible and
summarize our results in §4.
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Fig. 1. The model of n pendulum clocks hanging from a horizontal beam.

§2. The model

In the current studies we consider a system shown in Fig. 1. The beam of mass
M can move in the horizontal direction x. The beam supports n pendulum clocks
with pendula of the same length l, identical period of oscillations T (due to the small
amplitudes of the clocks’ pendula15)) and different masses mi(i = 1, 2, . . .). Under
these assumptions the clocks are accurate, i.e., when uncoupled show exactly the
same time but can be different by the design of the pendulum and the escapement
mechanism. The position of the i-th pendulum is given by a variable ϕi and its
oscillations are damped by the viscous friction described by damping coefficient
cϕi. We assume that this friction is proportional to the pendulum mass mi, i.e.,
cϕi = cϕmi and the length of the pendula l is equal to g/4π2= 0.2485 [m], where g
is a gravitational acceleration. The beam is considered as a rigid body so the elastic
waves along it are not considered. We describe the phenomena which take place far
below the resonances for both longitudinal and transverse oscillations of the beam.

The system equations can be written in a form of Euler-Lagrange equations:

mil
2ϕ̈i + miẍl cos ϕi + cϕmiϕ̇i + migl sin ϕi = MDi, (1)(

M +
n∑

i=1

mi

)
ẍ +

n∑
i=1

(
milϕ̈i cos ϕi − milϕ̇

2
i sin ϕi

)
= 0. (2)

The clock escapement mechanism (described in details in 13)) represented by mo-
mentum MDi provides the energy needed to compensate the energy dissipation due
to the viscous friction cϕi and to keep the clocks running.15) This mechanism acts in
two successive steps (the first step is followed by the second one and the second one
by the first one). In the first step if ϕi < γN then MDi = MNi and when ϕi < 0 then
MDi = 0, where γN and MNi are constant values which characterize the mechanism.
For the second stage one has for −γN < ϕi < 0 MDi = −MNi and for ϕi > 0 MDi

= 0. In the undamped (cϕi = 0) and unforced (MDi = 0) case when the beam M
is at rest (x = 0) each pendulum oscillates with the period T equal to 1.0 [s] and
frequency α = 2π [s−1]. Under these assumptions the dynamics of the pendulum
clock is described by a self-excited oscillator with a limit cycle16) (see also Ref. 17)).
The dynamics of the other type of clock escapement mechanism, i.e., verge and foliot
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mechanism is described in Refs. 5), 18) and 19).
After the initial transient the pendula perform the periodic oscillations so the

solution of Eq. (1) can be approximately described as

ϕi = Φ sin (αt + βi) . (3)

Assuming that Φ is small (typically for pendulum clocks Φ < 2π/36 and for clocks
with long pendula Φ is even smaller15)) one can linearize Eq. (2) as follows:(

M +
n∑

i=1

mi

)
ẍ +

n∑
i=1

(
milϕ̈i − milϕ̇

2
i ϕi

)
= 0, (4)

or substituting Eq. (3) into Eq. (4)(
M +

n∑
i=1

mi

)
ẍ =

n∑
i=1

(
milα

2Φ sin(αt + βi) + milα
2Φ3 cos2(αt + βi) sin(αt + βi)

)
.

(5)
Taking into consideration the relation cos2 α sin α = 0.25(sin α + 3 sin 3α) and sub-
stituting

U = M +
n∑

i=1

mi, F1i = milα
2(Φ + 0.25Φ3), F3i = 0.75milα

2Φ3,

one gets

Uẍ =
n∑

i=1

(F1i sin(αt + βi) + F3i sin(3αt + 3βi)) . (6)

The right-hand side of Eq. (6) represents the force with which n pendula act on
the beam M . Equation (6) allows the determination of the beam acceleration ẍ and
(after integration) of its velocity ẋ and displacement x. Notice that this force consists
only of the first and the third harmonics. Later this property will be essential in
explanation why in the system (1) and (2) one observes only configurations consisting
of three and five clusters of synchronized pendula.

To study the stability of the solution of Eqs. (1) and (2) we add perturbations
δi and σ to the variables ϕi and x and obtain the following linearized variational
equation:

mil
2δ̈i + miσ̈l cos ϕi + milδi(g cos ϕi − ẍ sin ϕi) + cφδ̇i = 0, (7)

M +
n∑

i=1

miσ̈ +
n∑

i=1

(milδi cos ϕi −milϕ̇
2
i δi cos ϕi −milϕ̈

2
i sin ϕi − 2milϕ̇iδ̇i sin ϕi) = 0.

(8)
The solution of Eqs. (1) and (2) given by ϕi(t) and x(t) is stable when the solution
of Eqs. (7) and (8) δi and σ tend to zero for t → ∞. All the pendula configurations
described in this paper fulfil this relation.



Clustering of Non-Identical Clocks 5

Fig. 2. Two metronomes located on the plate which can roll on the base: (a) complete synchroniza-

tion, (b) antiphase synchronization. Arrows indicate additional masses added to differentiate

the total masses of the metronomes’ pendula.

§3. Pendula’s configurations

3.1. Two clocks (n = 2)

In the case of two clocks when their pendula have different masses m1 and m2 and
the same period of oscillations T one can observe two types of synchronization.20)

The first one is the complete synchronization when both pendula oscillate in the
same way (i.e., ϕ1 = ϕ2) and move in the opposite direction to the beam motion. In
the case of complete synchronization the motion of the beam identically influences
the pendula’s period of oscillation. The second one is the antiphase synchronization
when there is π phase shift between displacements of pendula.

In Figs. 2(a) and (b) we show the simple experimental confirmation of the stabil-
ity of both synchronization configurations. Two metronomes located on the elastic
plate which can roll on the base obtain a complete synchronization (Fig. 2(a)) and
an antiphase synchronization (Fig. 2(b)). The masses of metronomes pendula are
slightly different as to one of them the small masses (indicated by arrows) have been
added. Notice that in the case of antiphase synchronization the plate is not at rest
(as in the case of identical pendula), but oscillates with a small amplitude. There is
also a small difference in pendula amplitudes.

3.2. Three clocks (n = 3)

Generally, in the system with three pendulum clocks one can observe the fol-
lowing synchronization cases; (i) complete synchronization, (ii) phase synchroniza-
tion with the constant phase shifts between pendula, i.e., ϕ1 − ϕ2 = constant,
ϕ2 − ϕ3 = constant, ϕ1 − ϕ3 = constant. Antiphase synchronization can be ob-
served only as a special case of (ii) and occurs when the sum of the masses of two
pendula (1 and 2) is equal to the mass of the third pendulum (3), say m1 +m2 = m3.
The first and the second pendula create a cluster (ϕ1 = ϕ2). Pendula 1 and 2 oscillate
in antiphase to the pendulum 3, i.e., ϕ1 = ϕ2 = −ϕ3.

In our numerical simulations Eqs. (1) and (2) have been integrated by the Runge-
Kutta method. The initial conditions have been set as follows; (i) for the beam x(0) =
ẋ(0) = 0, (ii) for the pendula the initial conditions ϕ1(0), ϕ̇1(0) have been calculated
from the assumed initial phase differences βII and βIII (in all calculations βI = 0 has
been taken) using Eq. (3), i.e., ϕ1(0) = 0, ϕ̇1(0) = αΦ, ϕ2(0) = Φ sin βII, ϕ̇2(0) =
αΦ cos βII (as it will be explained later the angles βI = β1 = 0, βII = β2, βIII = −β3

have been introduced for better description of the symmetrical configurations). To



6 K. Czo�lczyński, P. Perlikowski, A. Stefańki and T. Kapitaniak

prove the stability of the obtained configurations we used Eqs. (7) and (8).
Stable configurations of the pendula can be visualized in the following maps.

We plot the position of each pendulum given by Eqs. (1) and (2) (after decay of the
transients) in the phase space ϕi, ϕ̇i at the time when the first pendulum is moving
through the equilibrium position ϕ1 = 0 with the positive velocity ϕ̇1 > 0. After the
initial transients the pendula perform periodic oscillations, which are visible in such
maps by a single point for each pendulum (for better visibility indicated as a black
dot). As the pendula oscillate with the same amplitude the distance of each point to
the origin (0, 0) is equal. The lines between these points and the origin are equal to
the phase differences βi between the oscillations of the pendula. White circle around
the group of pendula indicates that the cluster of synchronized pendula has been
created.

The examples of the synchronized states of the system with three non-identical
clocks are shown in Figs. 3(a)–(c). Figure 3(a) presents the pendula configuration
obtained for beam mass M= 10.0 and different pendula masses: m1 = 1.0, m2 =
m3 = 2.0. As m2 = m3 and βII = βIII, one can observe symmetrical phase syn-
chronization. Phase differences βII = βIII = 104.5◦ are different from that obtained
for the case of identical pendula masses m1 = m2 = m3 = 1.011) where we ob-
served βII = βIII = 120◦. In Fig. 3(b) we show the results for: m1 = 1.0, m2 = 1.75,
m3 = 2.25. Nonsymmetrical phase synchronization with phase differences: βII = 73◦,
βIII = 132◦ has been observed. Finally, Fig. 3(c) shows the example of the complete
synchronization observed for: m1 = 1.0, m2 = 1.75, m3 = 2.25. Different con-
figurations of the system (1) and (2) have been obtained by setting various initial
conditions.

Phase differences βII and βIII can be approximately estimated on the basis of
the linear approximation derived in §2. In the case of three clocks the sum of the
forces acting on the beam M (the right-hand side of Eq. (6)) is equal to zero when

F11 sin αt + F12 sin αt cos βII + F12 cos αt sin βII + F13 sin αt cos βIII

−F13 cos αt sin βIII + F31 sin 3αt + F32 sin 3αt cos 3βII

+F32 cos 3αt sin 3βII + F33 sin 3αt cos 3βIII − F33 cos 3αt sin 3βIII = 0. (9)

In Eq. (9) the phase shift of the pendulum 1 has been taken as zero (the reference
point on the time axis t). Additionally, due to the relation βII = β2 and βIII = −β3,
symmetrical configuration of Fig. 3(a) is better visible as βII = βIII. After some
algebraic manipulations one gets

sin αt(F11 + F12 cos βII + F13 cos βIII) + cos αt(F12 sin βII − F13 sin βIII)
+sin 3αt(F31 + F32 cos 3βII + F33 cos 3βIII) + cos 3αt(F32 sin 3βII − F33 sin 3βIII) = 0.

(10)

Equation (10) showing the force acting on the beam M can be expressed as the sum
of the first and third harmonics. Equation (10) is fulfilled for phase shifts βII and
βIII, given by

F11 + F12 cos βII + F13 cos βIII = 0,
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Fig. 3. Synchronization configurations for three pendula; M = 10.0; (a) symmetrical synchroniza-

tion of three pendula m1 = 1.0, m2 = m3 = 2.0, βI0 = 0◦, βII0 = 60◦, βIII0 = 240◦, (b)

unsymmetrical synchronization of three pendula m1 = 1.0, m2 = 1.75, m3 = 2.25, βI0 = 0◦,
βII0 = 60◦, βIII0 = 240◦, (c) full synchronization of three pendula m1 = 1.0, m2 = 1.75,

m3 = 2.25, βI0 = 0◦, βII0 = 25◦, βIII0 = 305◦.

F12 sin βII − F13 sin βIII = 0,

F31 + F32 cos 3βII + F33 cos 3βIII = 0,

F32 sin 3βII − F33 sin 3βIII = 0. (11)

Equations (11) have no solution. i.e., for the system with three clocks it is impossible
to have both first and third harmonics of the force acting on the beam equal to zero.
The stable pendula configuration occurs when the first harmonic is equal to zero, so
the phase differences βII and βIII can be calculated from the first two equations:

F11 + F12 cos βII + F13 cos βIII = 0,
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Fig. 4. Phase differences βII and βIII versus pendula masses; (a) contour map of βII versus m2 and

m3, (b) contour map of βIII versus m2 and m3.

F12 sin βII − F13 sin βIII = 0. (12)

Dividing both sides of Eq. (12) by F11 one gets

m1 + m2 cos βII + m3 cos βIII = 0,

m2 sin βII − m3 sin βIII = 0. (13)

To solve Eq. (13) we have been searching for the zero minimum of the following
function:

H13 = (m1 + m2 cos βII + m3 cos βIII)
2 + (m2 sin βII − m3 sin βIII)

2 . (14)

The function H13 represents the square of the amplitude of the first harmonic com-
ponent of the force acting on the beam M . Notice that the phase differences βII and
βIII calculated from Eq. (14) do not depend on the models of escapement mechanism
and friction.

Our calculations show that for m1 = 1.0, m2 = 2.0, m3 = 2.0 the function
H13(βIII, βII) is equal zero for βIII = βII = 104.5◦, i.e., the same values as numeri-
cally obtained from the numerical integration of Eqs. (1) and (2) (see Fig. 3(a)). For
the parameters of Fig. 3(b) (m1 = 1.0, m2 = 1.75, m3 = 2.25) one gets the same
agreement as H13min(βIII, βII) = H13(132◦, 73◦) = 0. Further calculations confirm
that the phase synchronization in the system (1) and (2) occurs for the phase differ-
ence βII and βIII given by Eq. (13) and give evidence that the phase synchronization
occurs when the first harmonic component of the force acting on the beam M is equal
to zero. In this case the beam M is oscillating with the period three times smaller
than the periods of the pendula’s oscillations. The motion of the beam influences
the oscillations’ periods of each pendula in the same way and in the steady state
these periods are equal, i.e., the condition for synchronization is fulfilled.

The properties of the solution of Eq. (13) are discussed in Figs. 4(a) and (b).
The contour map showing the values of phase differences βII and βIII for m1 = 1.0
and different masses of the pendula m2 and m3 are shown in Figs. 4(a) and (b).
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Fig. 5. Synchronization configurations of three pendula for various values of m2 and m3; (a) m3 =

m2 = 2.0, (b) m3 = 1.5, m2 = 2.5, (c) m3 = m2 = 0.5, (d) m3 = m2 = 100.0.

In Figs. 4(a) and (b) point A (m3 = 2.25, m2 = 1.75) represents the configuration
of Fig. 3(b) (βII = 73◦ and βIII = 132◦) and point B (m3 = 2.0, m2 = 2.0 and
βII = βIII = 104.5◦) – this configuration shown in Fig. 5(a). Notice that starting
from the symmetrical configuration (point B) due to the simultaneous decrease of
the value of m3 and increase of the value of m2, phase difference βII tends to 180◦
and phase difference βIII tends to zero. In the limit case – point C – pendula mass
m1 = 1.0 and m3 = 1.5 create a cluster oscillating in antiphase to the pendulum mass
m2 = 2.5 (equal to the mass of the created cluster) as can be seen in Fig. 5(b). When
the mass m2 is larger than the sum of the masses m1 +m3 (white region in Figs. 4(a)
and (b)) Eq. (11) has no solution and phase synchronization is not observed. Let
us start again from the symmetrical configuration of Fig. 3(a) (m2 = m3 = 2.0)
and decrease the values of m2 = m3 and observe the values of phase differences
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Fig. 6. Three metronomes located on the plate which can roll on the base: (a) symmetrical synchro-

nization with phase shift βII = βIII = 120◦, (b) antiphase synchronization of the left metronome

with the cluster of the center and right metronomes (the mass of the left pendulum is equal to

the sum of the masses of the center and right pendula).

βII = βIII increase towards 180◦. In the limit case (point F) pendula mass m2 = 0.5
and m3 = 0.5 create a cluster which oscillates in antiphase with pendulum mass
m1 = 1.0 as shown in Fig. 5(c). On the other hand, with the increase of the values
of m2 = m3, phase differences βII = βIII decrease (for example to 98.5◦ for m2 = m3

= 3.0 – point G in Figs. 4(a) and (b)). In the limit as m2 = m3 tends to infinity,
βII = βIII tends to 90◦ – the corresponding configuration is shown in Fig. 5(d).

One can conclude that the phase synchronization can occur when the mass of
the largest pendulum is smaller than the sum of the masses of the other two pendula.
If m1 > m2 and m1 > m3 one gets

m1 ≤ m2 + m3. (15)

Relation (15) gives the necessary condition for the phase synchronization in the
system with three pendulum clocks.

Typical configurations for the system of three clocks have been also observed in
the experiments with metronomes described in Figs. 6(a) and (b). Three metronomes
(with different masses of pendula) located on the plate which can roll on the base can
show the symmetrical synchronization with phase shift βII = βIII = 120◦ (Fig. 6(a))
and antiphase synchronization of the left metronome with the cluster consisting of
the center and right metronomes (Fig. 6(b)). In the second case the mass of the left
pendulum is equal to the sum of the masses of the center and right pendula.

Notice that the method of the phase shift estimation (Eqs. (9)–(14)) and par-
ticularly necessary condition (15), derived for three pendula, can be generalized to
any number of pendula synchronized in three clusters. In this case one can rewrite
condition (15) in the form:

m̄1 ≤ m̄2 + m̄3, (16)

where m̄1, m̄2 and m̄3 are respectively the sum of pendula’s masses in first, second
and third cluster.

3.3. Four clocks (n = 4)

In the system with four pendulum clocks one can observe two types of syn-
chronization; (i) the complete synchronization of all pendula (pendula oscillate in
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Fig. 7. Synchronization configurations for four pendula: M = 10.0; (a) pendula m1 = 1.0, m2 =

1.75 form the cluster, βI0 = 0◦, βII0 = 73◦, βIII0 = 130◦, βIV0 = 270◦, (b) pendula m1 = 1.0,

m4 = 2.0 form the cluster, βI0 = 0◦, βII0 = 73◦, βIII0 = 130◦, βIV0 = 340◦, (c) pendula m1 = 1.0,

m3 = 2.25 form the cluster, βI0 = 0◦, βII0 = 140◦, βIII0 = 340◦, βIV0 = 220◦.

antiphase with the oscillations of the beam), (ii) the phase synchronization between
a cluster of two synchronized pendula and two other pendula (two clusters with one
pendulum). In the case of phase synchronization different pendula can create the
cluster (there are six different possibilities: 1 + 2, 1 + 3, 1 + 4, 2 + 3, 2 + 4, 3 + 4).
The necessary condition for the existence of particular configuration (16) states: the
mass of the largest cluster (with one or two pendula) has to be smaller than the sum
of other two clusters masses.

Consider a few examples of the phase synchronization for the beam mass M =
10.0 and four pendula mass m1 = 1.0, m2 = 1.75, m3 = 2.25, m4 = 2.0. For these
parameters the above condition of the existence of the cluster (16) is fulfilled by
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three pairs of pendula: 1 + 2, 1 + 3 and 1 + 4. The corresponding configurations are
shown in Figs. 7(a)–(c). The same phase differences as observed in Figs. 7(a)–(c)
can be calculated from the function H13 given by Eq. (14). Notice that in this case
cluster has to be considered as a single pendulum with mass equal to the total mass
of the pendula in cluster.

3.4. Five clocks (n = 5)

In the system with five pendulum clocks we observed three different types of syn-
chronization: (i) complete synchronization of all pendula, (ii) phase synchronization
of three clusters and (iii) phase synchronization of five pendula.

The examples of synchronization configurations for the system with five pendu-
lum clocks are shown in Figs. 8(a)–(d). Figure 8(a) presents the results obtained for:
M = 10.0, m1 = m2 = m3 = 1.0, m4 = 0.75, m5 = 1.25. Observe the phase synchro-
nization with the following phase differences: βII = 124.5◦, βIII = 162◦, βIV = 71◦,
βV = 77◦. In this configuration the beam M is in rest. Notice that contrary to the
case of identical clocks11),12) the obtained configuration is unsymmetrical. The con-
figuration obtained for the same parameter values but different initial phases is shown
in Fig. 8(b). The two clusters with masses: (m1 + m4) = 1.75, (m2 + m3) = 2.0
and pendulum 5 (m5 = 1.25) are phase synchronized. The phase differences are
respectively βII = 142◦ and βIII = 98◦. Different three clusters’ configurations are
shown in Figs. 6(c) and (d). Figure 8(c) shows the configuration of the clusters which
consist respectively of pendula 1 and 3 (m1 + m3 = 3), pendulum 4 (m4 = 0.75)
and pendula 2 and 5 (m2 + m5 = 2.25). The phase differences between clusters are
given by βII = 80◦ and βIII = 161◦. The configuration of the clusters consisting
of pendulum 1 (m1 = 1.0), pendula 2 and 4 (m2 + m4 = 1.75) and pendula 3 and
5 (m3 + m5 = 2.25) with phase differences βII = 72◦ and βIII = 133◦ is shown in
Fig. 8(d). The last possible configuration with clusters consisting of pendulum 1
(m1 = 1.0), pendula 2 and 4 (m2 + m4 = 2.0), pendula 3 and 5 (m3 + m5 = 2.0)
and phase differences βII = 104.5◦ and βIII = 104.5◦ has been already shown in
Fig. 3(a). Other three cluster configurations are either equivalent to these presented
in Figs. 8(a)–(c) and 3(a) or do not fulfill condition (16). (In this case m̄1, m̄2 and
m̄3 indicate the total masses of each of three clusters.)

Phase differences βII, βIII, βIV and βV can be approximately estimated on the
basis of the linear approximation derived in §2. In the case of five pendulum clocks
the forces acting on the beam M are equal to zero when

F11 + F12 cos βII + F13 cos βIII + F14 cos βIV + F15 cos βV = 0,

F12 sin βII − F13 sin βIII + F14 sin βIV − F15 sin βV = 0,

F31 + F32 cos 3βII + F33 cos 3βIII + F34 cos 3βIV + F35 cos 3βV = 0,

F32 sin 3βII − F33 sin 3βIII + F34 sin 3βIV − F35 sin 3βV = 0. (17)

Contrary to the case with three clocks (11) now we have four equations with four
unknown phase differences βII, βIII, βIV and βV and it is possible to find the solution
which fulfills all equations of (17). For such values of βII, βIII, βIV and βV both the
first and the third harmonic of the force acting on the beam M vanish and the beam
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Fig. 8. Synchronization configurations of five pendula: M = 10.0; m1 = m2 = m3 = 1.0, m4 =

0.75, m5 = 1.25; (a) configuration of five clusters, (b) configuration of three clusters mass

1.75, 2.0, 1.25, (c) configuration of three clusters of the following masses 2.0, 0.75, 2.25, (d)

configuration of three clusters of the following masses 1.0, 1.75, 2.25.

is in rest. Dividing the first two of Eq. (17) by F11 and the other two by F31 one
gets

m1 + m2 cos βII + m3 cos βIII + m4 cos βIV + m5 cos βV = 0,

m2 sin βII − m3 sin βIII + m4 sin βIV − m5 sin βV = 0,

m1 + m2 cos 3βII + m3 cos 3βIII + m4 cos 3βIV + m5 cos 3βV = 0,

m2 sin 3βII − m3 sin 3βIII + m4 sin 3βIV − m5 sin 3βV = 0. (18)

Equation (18) has been solved by the method of searching for the zero minimum of
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Fig. 9. Contour maps of phase differences (a) βII, (b) βIII, (c) βIV, (d) βV, versus pendula masses

m4 and m5; m1 = m2 = m3 = 1.0.

the functions H15 and H35:

H15 = (m1 + m2 cos βII + m3 cos βIII + m4 cos βIV + m5 cos βV)2

+ (m2 sin βII − m3 sin βIII + m4 sin βIV − m5 sin βV)2 ,

H35 = (m1 + m2 cos 3βII + m3 cos 3βIII + m4 cos 3βIV + m5 cos 3βV)2

+ (m2 sin 3βII − m3 sin 3βIII + m4 sin 3βIV − m5 sin 3βV)2 . (19)

The functions H15 and H35 represent respectively the square of the amplitude of the
first and third harmonic components of the force acting on the beam M . Notice that
the phase differences βII, βIII, βIV and βV calculated from Eq. (18) do not depend
on the models of escapement mechanism and friction.

The dependence of the phase differences βII, βIII, βIV and βV, i.e., the values for
which functions H15 and H35 have zero minimum, on the parameters m1, m2, m3,
m4 and m5 is partially described in Figs. 9(a)–(d). To reduce the dimensionality and
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allow the visualization we consider m1 = m2 = m3 = 1.0 (three identical pendula),
and allow m4 and m5 to vary in the interval [0.0, 1.5]. The contour maps of βII, βIII,
βIV and βV are shown respectively in Figs. 9(a)–(d). The phase differences βII and
βIII are shown in the interval [90◦, 180◦] and βIV, βV in the interval [0◦, 90◦]. In
Figs. 9(a)–(d) a few characteristic points are indicated. Point A (m4 = 0.75, m5 =
1.25) represents the phase synchronization of five pendula: m1 = m2 = m3 = 1.0,
m4 = 0.75, m5 = 1.25, with phase differences given by: βII = 124.5◦, βIII = 162◦,
βIV = 71◦, βV = 77◦ (this configuration is shown in Fig. 8(a)). On the line m4 = m5

the symmetrical configurations are located. The symmetrical configuration of five
identical clocks is indicated by point B. Point C (m5 = m4 = 0.75) is characteristic
for the configuration for m1 = m2 = m3 = 1.0 and m4 = m5 = 0.75 with phase
differences βII = βIII = 145.5◦ and βIV = βV = 65.5◦. The configuration of the
point D (m5 = m4 = 0.5) is shown in Fig. 10(a). The phase differences for pendula
2 and 3 (m2 = m3 = 1.0) are equal to βII = βIII = 180◦, and for pendula 4 and
5 βIV = βV = 0◦. It is a limit case in which two clusters of two and three pendula,
but with the same mass m1 + m4 + m5 = m2 + m3 = 2.0, are in antiphase to each
other. Point E represents the system with m5 = m4 = 0.0, i.e., the system with
three clocks, m1 = m2 = m3 = 1.0 and phase differences βII = βIII = 120◦. Point
F (m5 = m4 = 1.5) describes the configuration for m2 = m3 = 1.0, m4 = m5 = 1.5
and phase differences βII = βIII = 143◦ and βIV = βV = 78◦. Observe that with
the further increase of the masses of pendula 4 and 5, i.e., for m5 = m4 → ∞,
phase differences βIV = βV → 90◦, so pendula 4 and 5 oscillate in antiphase, and
phase differences βII = βIII → 120◦. In this case we have the co-existence of two
configurations; two large pendula with equal masses m5 = m4 oscillate in antiphase
and other pendula with masses m1 = m2 = m3 = 1.0 are phase synchronized with
phase differences βII = βIII = 120◦ as shown in Fig. 10(b). Point G is the crossing
point of the lines m4 = 1.5 − m5 and m4 = m5 − 1. It represents the system with
m4 = 0.25 and m5 = 1.25, in which phase difference of pendulum 3 (m3 = 1.0) is
equal to βIII = 180◦ and this pendulum is in antiphase to pendulum 1 (m1 = 1).
Phase differences of pendula 2 (m2 = 1.0) and 4 (m4 = 0.25) are βII = βIV = 90◦,
which means that these pendula create a cluster which is in antiphase to pendulum
5 (m5 = 1.0) for which βV = 90◦. This is a special case when there are four
clusters with antiphase synchronization in pairs – see Fig. 8(c). The symmetrical
configuration to the one described in Fig. 10(c) is shown in Fig. 10(d) and represented
by point H in Figs. 9(a)–(d).

Similar contour maps can be obtained for different intervals of phase differences
βII, βIII, βIV and βV. For some values of the parameters m4 and m5 more than one
phase synchronization configurations of five clusters exist. i.e., for some values of
m4 and m5 there exist more than one different set of phase differences βII, βIII, βIV

and βV for which functions H15 and H35 have zero minima.
The method of the phase shifts estimation derived for five pendula (Eqs. (17)–

(19)) can be generalized to any number of pendula synchronized in five clusters.
Substituting the total masses of clusters m̄1−5 instead of pendulum masses m1−5

one gets equations which allow estimation of the phase shifts between clusters.
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Fig. 10. Synchronization configurations of five pendula; (a) antiphase configuration of two clusters

of the mass 2.0 each, (b) coexistence of two heavy pendula in antiphase with the configuration

of three pendula mass 1.0 each, (c) coexistence of two pairs of two clusters in antiphase; (d)

mirror image of previous configuration.

§4. Discussion and conclusions

For some values of the parameters m4 and m5 there exist more than one phase
synchronization configurations of five clusters, i.e., for m4 and m5 there exist more
than one different set of phase differences II, III, IV and V for which functions
H15 and H35 have zero minima. To explain why other cluster configurations are
not possible goes back to the approximation given by Eq. (6). The pendula act
on the beam M with the force which consists only of the first and third harmonics
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Fig. 11. Synchronization of 20 clocks: mi = 1.0, li = 0.2485, M = 10.0, kx = 118.4, cx = 24.0. N

on the parallel axis indicated the number of periods of the pendula oscillations.

of the pendula’s oscillations frequency α. Three clusters configuration occurs when
the first harmonic of this force is equal to zero and the system tends to five clusters
configuration when both harmonics are equal to zero. This result is exactly the same
as in the case of identical clocks (for details see Refs. 13) and 14)) and is general
for the problems of clocks’ synchronization but contrary to the case of identical
clocks13),14) clustering in three and five clusters is easily observable for both even
and odd numbers of clocks. For an even number of clocks the creation of the pairs
of clocks synchronized in antiphase is possible only in the special non-robust case
of two groups of identical clocks. Due to the assumption (3) and the small swings
of the pendula (Φ < 2π/36) other harmonics do not exist (or are extremely small).
One can expect the appearance of other numbers of clusters, when the pendula’s
swings are larger and their periodic oscillations will be described by higher harmonic
components, but this is not the case of the pendula clocks.

We studied the systems with up to 100 clock. It has been found that for larger n,
randomly distributed differences of pendula masses three clusters configurations are
more probable than five clusters ones. As an example consider the case of 20 clocks
shown in Fig. 11. After the initial transient pendula with randomly distributed
masses mi = 1.0 ± 0.1 create three clusters with respectively 6, 7 and 7 pendula.
Notice that as described in §3.2 the beam is oscillating with a small amplitude.

As in the case of identical clocks13),14) we show that the clocks clustering phe-
nomena take place far below the resonances for both longitudinal and transverse
oscillations of the beam so the influence of these oscillations can be neglected.

To summarize, we have studied the phenomenon of the synchronization in the
array of non-identical pendulum clocks hanging from an elastically fixed horizontal
beam. We show that besides the complete synchronization of all pendulum clocks,
the pendula can be grouped either in three or five clusters only. The pendula in
the clusters perform complete synchronization and the clusters are in the form of
the phase synchronization characterized by a constant phase difference between the
pendula given by Eq. (13) for three pendula and Eq. (17) for five pendula. All the
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pendula configurations reported in this paper are stable and robust as they exist
for the given sets of system (1) and (2) parameters which have positive Lebesque
measure.
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