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1. Introduction

Recent investigations have shown that the coupled systems have great potential in a large amount of application areas
ranging from physics and engineering to economy, biology and medicine [1,3,15]. The main interest in these studies is fo-
cused on the phenomenon of synchronization as the phenomenon of mutual synchronization offers the most fundamental
example of emergent behavior. It is the process where two or more systems interact with each other and come to oscillate
together. Groups of oscillators are observed to synchronize in a diverse variety of systems, despite the inevitable differences
between the oscillators. Synchronization is widespread in nature and common in mechanical oscillatory systems.

The phenomenon of the synchronization of the clocks hanging on a common movable beam [10] has been recently the
subject of research by a number of authors [2,4–9,11–14,16–19]. These studies give the definite answer to the question;
what Huygens was able to observe, e.g., Bennet et al. [2] state that to repeat Huygens’ results, the high precision (the pre-
cision that Huygens certainly could not achieve) is necessary and Kanunnikov and Lamper [11] show that the precise anti-
phase motion of different pendula noted by Huygens cannot occur. Our studies [4–7] prove that in the case of nonidentical
clocks only almost antiphase synchronization can be observed.

In the previous papers [4,5,10] we studied a synchronization problem for n pendulum clocks hanging from an elastically
fixed horizontal beam. It was assumed that each pendulum performs a periodic motion which starts from different initial
conditions. We showed that after a transient different types of synchronization between pendula can be observed. The first
type is in-phase complete synchronization in which all pendula behave identically. In the second type one can identify the
groups (clusters) of synchronized pendula. We showed that only configurations of three and five clusters are possible and
derive algebraic equations for the phase difference between the pendula in different clusters.

In this paper we consider the case of n identical self-excited pendula hanging from the same beam. The oscillations of
each pendulum are self-excited by van der Pol’s type of damping. Contrary to the previously considered cases we assume
. All rights reserved.
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that the beam can oscillate not in the horizontal but in vertical direction. The possible synchronous configurations have been
identified and their stability has been investigated. We consider the energy balance in the system, derive the synchronization
conditions and explains the observed types of synchronizations. We argue that our results are robust as they exist in the
wide range of system parameters.

This paper is organized as follows. Section 2 describes the considered model of the coupled pendula. In Section 3 we de-
rive the energy balance of the synchronized pendula. Section 4 presents the results of our numerical simulations and de-
scribes the observed synchronization states. Finally, we summarize our results in Section 5.

2. Model

The analyzed system is shown in Fig. 1. It consists of a rigid beam and a number of pendula suspended on it. The beam of
mass M can displace only vertically (it has one degree of freedom); it is connected with the frame by a lightweight linear
spring of the stiffness coefficient KY and a viscous damper of the damping coefficient CY . The displacement of the beam is
described by coordinate Y. The pendula have the form of mathematical pendula of lengths Li and masses Mi. The motion
of the pendula is described by angles ui and is self-excited by van der Pol’s type of damping (not shown in Fig. 1) given

by momentum (torque), Cui

dui
dtð1�CVDPiu2

i
Þ where Cui

and CVDPi are constant.

The equation of motion for the above-described system can be written as follows:
MiL
2
i

d2ui

dt2 �MiLi
d2Y

dt2 sin ui þ Cui 1:0� CVDPiu2
i

� � dui

dt
þMiLig sinui ¼ 0:0; i ¼ 1 . . . n ð1Þ

MB þ
Xn

i¼1

Mi

 !
d2Y

dt2 þ CY
dY
dt
þ KY Y ¼

Xn

i¼1

MiLi
d2ui

dt2 sin ui þ
dui

dt

� �2

cos ui

 !
ð2Þ
Considering mass M1 and length L1 of the first pendulum and the gravitational acceleration g as the reference quantities, the
dimensional Eqs. (1,2) can be rewritten in a dimensionless form as:
mil
2
i €ui �mili€y sin ui þ cui 1:0� cVDPiu2

i

� �
_ui þmili sinui ¼ 0:0; i ¼ 1 . . . n ð3Þ

mB þ
Xn

i¼1

mi

 !
€yþ cy _yþ kyy ¼

Xn

i¼1

mili €ui sin ui þ _u2
i cos ui

� �
ð4Þ
The relationships between the dimensional quantities of Eqs. (1) and (2) and the dimensionless quantities of Eqs. (3) and (4)
are as follow: mi ¼ Mi

M1
(dimensionless mass of the ith pendulum), li ¼ Li

L1
(dimensionless length of the ith pendulum), s ¼ at

(dimensionless time), a ¼
ffiffiffiffi
g
L1

q
; y ¼ Y

L1
(dimensionless displacement of the beam MÞ; cui ¼

Cui

ffiffiffiffi
L1

p
M1L2

1
ffiffi
g
p ; cVDPi ¼ CVDPi; mB ¼

MB
M1

cy ¼
CY

ffiffiffiffi
L1

p
M1
ffiffi
g
p ; ky ¼ KY L1

M1g , symbols and _ denote respectively d2

ds2 and d
ds.

In the case of a system composed of identical pendula, Eqs. (3) and (4) take the form:
€ui � €y sinui þ cui 1:0� cVDPiu2
i

� �
_ui þ sinui ¼ 0:0; i ¼ 1 . . . n ð5Þ

mB þ nð Þ€yþ cy _yþ kyy ¼
Xn

i¼1

€ui sinui þ _u2
i cos ui

� �
ð6Þ
Fig. 1. Pendula suspended on the vertically movable beam.
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One can say that the state of synchronization is attained when the motion of the system is periodic and this takes place
when the work (denoted below as WSYNÞ performed during one period of the pendulum motion by the force with which the
pendulum acts on the beam is equal to zero, then the pendulum energy remains constant.

Let us multiply Eq. (3) by the pendulum velocity. We will arrive at the equation of the power balance in the form:
mil
2
i €ui _ui þmili _ui sinui ¼ �cui _u2

i þ cuicVDPiu2
i _u2

i þmili€y sin ui _ui; i ¼ 1 . . . n ð7Þ
When the pendula and the whole system move periodically, the integration with respect to time of Eq. (7) takes the form of
equations of energy balance:
Z T

0
mil

2
i €ui _uidsþ

Z T

0
mili _ui sinuids ¼¼ �

Z T

0
cui _u2

i dsþ
Z T

0
cuicVDPiu2

i _u2
i dsþ

Z T

0
mili€y sinui _uids; i ¼ 1 . . . n ð8Þ
The left-hand side of Eq. (8) denotes an increment in the total energy of the pendulum. When the pendulum together with
the whole system move periodically, this increment is equal to zero:
Z T

0
mil

2
i €ui _uidsþ

Z T

0
mili _ui sinuids ¼ 0; i ¼ 1; . . . ;n ð9Þ
The first term on the right-hand side of Eq. (8) denotes the energy supplied during one period of oscillations by the van der
Pol’s damper:
WDAMP
i ¼ �

Z T

0
cui _u2

i ds; i ¼ 1; . . . n ð10Þ
The next term refers to the energy dispersed during one period of oscillations by the van der Pol’s damper:
WVDP
i ¼

Z T

0
cuicVDPiu2

i _u2
i dt; i ¼ 1; . . . ;n ð11Þ
The last term on the right-hand side of Eq. (8) represents the energy transferred by the pendulum to the moving beam (the
energy lost by the pendulum due to the beam motion):
WSYN
i ¼

Z T

0
mili€y sin ui _uids; i ¼ 1; . . . ; n ð12Þ
Substituting Eqs. (9)–(12) into Eq. (8), we obtain energy balances of pendula in the form:
WDAMP
i þWVDP

i þWSYN
i ¼ 0; i ¼ 1; . . . ;n ð13Þ
Equaling to zero the work of synchronization expressed by Eq. (12) does not lead to any effective conclusions, thus the next
step in the analysis of the synchronization phenomenon is an assumption of the harmonic character of the pendulum mo-
tion. If the amplitude of the beam motion and the amplitude of the pendulum motion are low enough, it can be assumed that
the pendulum motion is described by the harmonic function:
ui ¼ Ui sin sþ bið Þ ð14Þ
(note that the frequency of pendulum free oscillations equals to 1 in the dimensionless notation), and thus the functions
describing velocity and acceleration are as follow:
_ui ¼ Ui cos sþ bið Þ
€ui ¼ �Ui sin sþ bið Þ ð15Þ
After the substitution of Eqs. (14) and (15) into beam motion Eq. (4), one obtains:
mb þ
Xn

i¼1

mi

 !
€yþ cy _yþ kyy ¼

Xn

i¼1

�miliU
2
i sin2ðsþ biÞ þmiliU

2
i cos2ðsþ biÞ

� �
ð16Þ
Considering that cos2 a� sin2 a ¼ cos 2a, and denoting:
U ¼ mþb
Xn

i¼1

mi ð17Þ
one gets:
U€yþ cy _yþ kyy ¼
Xn

i¼1

miliU
2
i cosð2sþ 2biÞ

� �
ð18Þ
For a sufficiently small value of damping coefficient cy, the solution of Eq. (18) takes the following form
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y ¼
Xn

i¼1

Yi cosð2sþ 2biÞð Þ ð19Þ
where:
Yi ¼
miliU

2
i

ky � 4U
ð20Þ
Eqs. (19) and (20) allow to derive the beam acceleration:
€y ¼
Xn

i¼1

Ai cosð2sþ 2biÞð Þ ð21Þ
where:
Ai ¼ �
4miliU

2
i

kx � 4U
ð22Þ
The synchronization state of the pendulum motion is in other words the periodic motion of the system in which phase angles
bI are constant. In this state, when pendula are identical there is no energy transfer from one pendulum via the beam to an-
other pendulum. In the process of synchronization, such a state in which the synchronization work (12) during one period of
motion is equal to zero, is aimed at. Substituting Eqs. (14), (15), (21) into Eq. (12), and equaling Eq. (12) to zero, we obtain:
WSYN
i ¼

Z T

0
mili

Xn

k¼1

Ak cosð2sþ 2bkÞð Þ
 !

U2
i sinðsþ biÞ cosðsþ biÞds ¼ 0 ð23Þ
After further transformations, we arrive at:
WSYN
i ¼ miliU

2
i

Z T

0

Xn

k¼1

Ak cosð2sþ 2bkÞð Þ
 !

0:5 sinð2sþ 2biÞds ð24Þ

WSYN
i ¼ 0:5miliU

2
i

Xn

k¼1

Ak

Z T

0
ðcos 2s cos 2bk � sin 2s sin 2bkÞðsin 2s cos 2bi þ cos 2s sin 2biÞð Þds

 !
¼ 0 ð25Þ

WSYN
i ¼ 0:5miliU

2
i

Xn

k¼1

Ak

cos 2bk cos 2bi

R T
0 cos 2s sin 2sds

þ cos 2bk sin 2bi

R T
0 cos 2s cos 2sds

� sin 2bk cos 2bi

R T
0 sin 2s sin 2sds

� sin 2bk sin 2bi

R T
0 sin 2s cos 2sds

0
BBBBB@

1
CCCCCA ¼ 0 ð26Þ
As:
 Z T

0
cos 2s sin 2sds ¼ 0:0

Z T

0
sin 2s sin 2sds ¼ 0:5T ¼ p

Z T

0
cos 2s cos 2sds ¼ 0:5T ¼ p

ð27Þ
Eq. (26) takes the form:
WSYN
i ¼ 0:5miliU

2
i

Xn

k¼1

Akp cos 2bk sin 2bi � sin 2bk cos 2bið Þ ¼ 0:5pmiliU
2
i

Xn

k¼1

Ak sinð2bi � 2bkÞ

¼ �2pmiliU
2
i

kx � 4U

Xn

k¼1

mklkU
2
k sinð2bi � 2bkÞ ¼ 0:0: ð28Þ
Eq. (28) is satisfied for each pendulum (i.e., for each i = 1, . . .,n) by two groups of phase angles. The first group fulfills the
condition:
Xn

k¼1

mklkU
2
k sinð2bi � 2bkÞ ¼ 0:0; i ¼ 1; . . . n ð29Þ
as it satisfies the equations:
sinð2bi � 2bkÞ ¼ 0:0; i ¼ 1; . . . n; k ¼ 1; . . . ;n ð30Þ
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If b1 ¼ 0� is assumed (as one of the phase angles can be chosen arbitrarily), then condition (30) is satisfied evidently by all
combinations of the angles b1;2;...;n ¼ 0�, 90�, 180� and 270�. The second group of the phase angles corresponding to synchro-
nous configurations can be determined after the following transformation of Eq. (28):
Xn

k¼1
mklkU

2
k sinð2bi � 2bkÞ ¼

Xn

k¼1
mklkU

2
k sin 2bi cos 2bk � cos 2bi sin 2bkð Þ

¼ sin 2bi

Xn

k¼1
mklkU

2
k cos 2bkð Þ � cos 2bi

Xn

k¼1
mklkU

2
k sin bkð Þ ¼ 0:0

)
Xn

k¼1
mklkU

2
k cos 2bkð Þ ¼ 0:0 ^

Xn

i¼1
mklkU

2
k sin 2bkð Þ ¼ 0:0 ð31Þ
Eq. (31) in the case of identical masses of pendula and identical amplitudes of oscillations is simplified to the form:
Xn

i¼1

cos 2bi ¼ 0;
Xn

i¼1

sin 2bi ¼ 0 ð32Þ
3. Examples of pendula configurations

3.1. Two pendula

When n = 2 and b1 ¼ 0:0�, condition (30) is satisfied by the following phase angles:

(i) complete synchronization:
b1 ¼ 0
�

b2 ¼ 0
�

ð33Þ
(ii) antiphase synchronization:
b1 ¼ 0
�

b2 ¼ 180
�

ð34Þ
(iii) quarter-phase synchronization:
b1 ¼ 0
�

b2 ¼ 90
�

ð35Þ
(we do not distinguish the configurations of b1 ¼ 0� and b2 ¼ 270�, qualitatively identical to the above-mentioned quarter-
phase synchronization, as a separate case).

The quarter-phase configuration for which b2 ¼ 90� fulfills additionally the condition defining the second group of angles,
expressed by Eq. (32), which for two pendula takes the form:
1:0þ cos 2b2 ¼ 0 ð36Þ
sin 2b2 ¼ 0
3.2. Three pendula

When n = 3 and b1 ¼ 0�, condition (30) takes the form:
sinð2b1 � 2b2Þ ¼ 0
sinð2b1 � 2b3Þ ¼ 0
sinð2b2 � 2b3Þ ¼ 0 ð37Þ
and is satisfied by the following phase angles:

(i) complete synchronization:
b1 ¼ 0
�

b2 ¼ 0
�

b3 ¼ 0
�

ð38Þ
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(ii) antiphase synchronization of two clusters composed of one pendulum and two pendula:
b1 ¼ 0
�

b2 ¼ 180
�

b3 ¼ 180
�

ð39Þ
(as in Section 3.1, we do not distinguish the configurations of b1 ¼ 0�, b2 ¼ 0�, b3 ¼ 180� and b1 ¼ 0�, b2 ¼ 180�, b3 ¼ 0� qual-
itatively identical to the above-mentioned antiphase synchronization, as separate cases)

(iii) quarter-phase synchronization of two clusters composed of one pendulum and two pendula (unstable – the stability
investigation: see below):
b1 ¼ 0
�

b2 ¼ 90
�

b3 ¼ 90
�

ð40Þ
(iv) quarter-phase synchronization of three clusters composed of one pendulum each (also unstable):
b1 ¼ 0
�

b2 ¼ 90
�

b3 ¼ 180
�

ð41Þ
For the second group of angles, condition (32) takes the form:
1:0þ cos 2b2 þ cos 2b3 ¼ 0
sin 2b2 þ sin 2b3 ¼ 0 ð42Þ
and is not satisfied by the above-mentioned phase angles. However, the condition is fulfilled by the angles:
(v) 60� – phase synchronization:
b1 ¼ 0:0
�
; b2 ¼ 60:0

�
; b3 ¼ 120:0

�
ð43Þ
(vi) 120� – phase synchronization:
b1 ¼ 0:0
�
; b2 ¼ 120:0

�
; b3 ¼ 240:0

�
ð44Þ
3.3. Four pendula

For systems with four pendula, the authors distinguish the following kinds of synchronization for the phase angles sat-
isfying condition (30): (i) complete synchronization, when b1;2;...;4 ¼ 0� – all pendula form one cluster, (ii) antiphase synchro-
nization of two clusters composed of k and 4-k pendula: b1;2;...;k ¼ 0�, bkþ1;...;4 ¼ 180�, where k can have values from 1 to 3
depending on the initial conditions. The observed here size of configurations results from the fact that the function describ-
ing the resultant force the pendula exert on the beam does not depend on the number of pendula in each cluster; it is the
same as in the case of the complete synchronization.

For four pendula, condition (32) will take the form:
1:0þ cos 2b2 þ cos 2b3 þ cos 2b4 ¼ 0
sin 2b2 þ sin 2b3 þ sin 2b4 ¼ 0 ð45Þ
As can be seen, it is a system of two equations with three unknowns, thus the value of one of the phase angles, for instance of
b3, can be assumed arbitrarily (again, it depends on the initial conditions). It turns out that for b1 ¼ 0� and an arbitrary value
of b3, the system of Eq. (45) has the following solution:
b1 ¼ 0:0
�
; b2 ¼ 90:0

�
; b3 ¼ b3; b4 ¼ b3 þ 90:0

�
ð46Þ
It means that the synchronous configuration (called 90�+90� synchronization) consists of two pairs of in the quarter-phase
synchronization (observed in the systems with two pendula); the phase angle between these pairs depends on the initial
conditions and can be subjected to permanent alternations due to disturbances.

3.4. Beam motion in various states of synchronization

The right-hand side of Eq. (18) represents the total (resultant) force F the pendula exert on the beam:
F ¼
Xn

i¼1

miliU
2
i cosð2sþ 2biÞ

� �
ð47Þ
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Let us transform Eq. (47) to the form:
F ¼
Xn

i¼1

miliU
2
i cosð2sþ 2biÞ

� �
¼ m1l1U

2
1

Xn

i¼1

cos 2s cos 2bi � sin 2s sin 2bið Þ ¼

¼ cos 2s m1l1U
2
1

Xn

i¼1

cos 2bið Þ
 !

� sin 2s m1l1U
2
1

Xn

i¼1

sin 2bið Þ
 !

¼ 0:0 ð48Þ
It can be easily seen that for the phase angles fulfilling condition (32), the total force the pendula act on the beam is equal to
zero and the beam does not displace. It takes place for the quarter-phase synchronization of two pendula, the 60�-synchro-
nization and the 120�-synchronization of three pendula and the 90�+90� synchronization of four pendula. In the remaining
states of synchronization, the forces the pendula act on the beam do not balance out. Under the action of the resultant force
of the frequency 2, the beam performs harmonic oscillations of this frequency, twice as high as the frequency of the oscil-
lating motion of the pendula.

3.5. Stability of synchronous configurations

Having found which phase angles fulfill synchronization conditions (30) and (or) (32), it is indispensable to investigate
the stability of these configurations. The equations of disturbances corresponding to Eqs. (3) and (4) are as follow:
mil
2
i
€ni �mili€z sin ui ¼ �milið1� €yÞni cos ui � cui 1:0� cVDPiu2

i

� �
_nii ¼ 1 . . . n ð49Þ

mB þ
Xn

i¼1

mi

 !
€z�

Xn

i¼1

mili
€ni sinui ¼ �cy _z� kyzþ

Xn

i¼1

mili €uini cos ui � _u2
i ni sin ui þ 2 _ui

_ni cos ui

� �
ð50Þ
where nI are disturbances of the displacements ui and z is a disturbance of the beam displacement y. In the case of the sys-
tem with identical pendula, the equations of disturbances corresponding to equations of motion (5) and (6) take the form:
€ni � €z sinui ¼ �ð1� €yÞni cos ui � cui 1:0� cVDPiu2
i

� �
_ni ð51Þ

mB þ nð Þ€z�
Xn

i¼1

€ni sinui ¼¼ �cy _z� kyzþ
Xn

i¼1

€uini cos ui � _u2
i ni sin ui þ 2 _ui

_ni cos ui

� �
ð52Þ
where i = 1, . . . ,n.
4. Numerical calculations

In this section we present the examples of synchronous configurations of the system (1) and (2) and the maps showing
the dependence of the kind of the obtained synchronous configuration on the initial conditions. These results have been ob-
tained by the numerical integration of Eqs. (5) and (6) (for the system composed of a beam and identical pendula) by the 4th
order Runge–Kutta method.

The initial conditions are decisive as regards the kind of synchronization. The system under consideration has at least
three degrees of freedom (depending on the number of pendula) so it has been decided to impose certain limitations on
these conditions. It has been assumed that the numerical experiments start with the state in which the pendula suspended
on the fixed beam move steadily performing oscillations described by function (14). For the initial time of t = 0.0, the state of
the kth pendulum is described thus by the initial value of pendulum displacement ui0 and the initial velocity xi0:
uk0 ¼ U sin bk0

xk0 ¼ aU cos bk0 ð53Þ
Such an assumption means that the initial state of the pendulum is described only by one value bk0. As has been already
mentioned, the initial conditions of the beam are as follows: y0=0.0, v0=0.0.

The dimensionless parameters of the sample systems are the following: the van der Pol’s coefficients cui ¼ �0:01 and
cVDPi ¼ 60:0 (for these values, the amplitude of oscillations of the pendula suspended on the fixed beam is equal to
Ui ¼ 0:25 � 15�), the beam mass mb ¼ 2:0, the stiffness coefficient ky ¼ 10:0, the damping coefficient of the beam motion
cy depends on the number of pendula and corresponds to the logarithmic decrement of the oscillations damping
D ¼ ln 1:2 (the oscillator of the spring stiffness coefficient ky and the mass equal to mb þ n – mass of the beam and the
pendula).

4.1. Synchronization of two identical pendula

If two pendula of the same masses and the same periods of oscillations are connected to the beam, then there are possible
three kinds of synchronization, shown in Fig. 2(a-c), as it follows from the above-presented formulas, namely:



Fig. 2. Synchronization of the system with two pendula; (a) complete synchronization versus time, (b) antiphase synchronization versus time, (c) quarter-
phase synchronization versus time, (d) basins of attraction of various kinds of synchronization.
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– complete synchronization (Fig. 2(a)), during which both pendula move identically (u1 ¼ u2Þ and the beam oscillates
with a frequency twice as high as the frequency of the pendulum motion,

– antiphase synchronization (Fig. 2(b)), during which the motion of one pendulum is a mirror reflection of the motion of
the second one (u1 ¼ �u2Þ and the beam oscillates with a circular frequency twice as high as the circular frequency of
the pendulum motion, identically as in the case of the complete synchronization,

– quarter-phase synchronization (Fig. 2(c)), during which the phase shift between the displacements of both pendula is
equal to 90� and the fundamental (i.e., second) harmonics of the beam displacement is equal to zero, thus the beam
is fixed practically.

The displacements of the pendula and the beam (magnified 10 times) in Fig. 2(a-c) are shown in the steady state as a
function of time expressed by number N of the periods of free oscillations of the pendula suspended on the fixed beam.
Fig. 2(d) shows the basins of attraction, i.e., the regions of the initial values b10 and b20, which initiate individual synchronous
configurations. As can be seen, the quarter-phase synchronization dominates. An occurrence of the complete or antiphase
synchronization requires such initial values of the phase angles the difference of which is close to zero or 180�. Of course,
the size of the basins of attractions of individual configurations depends on the beam parameters: mb; ky and cy, which
can be an object of further investigations.

4.2. Synchronization of three identical pendula

If three pendula of the same masses and the same periods of oscillations are connected to the beam, then four kinds of
synchronization are possible, as shown in Fig. 3(a-d). It follows from the above-presented formulas, namely:

– complete synchronization (Fig. 3(a)), during which all the pendula move identically u1 ¼ u2 ¼ u3Þ and the beam oscil-
lates with a frequency twice as high as the frequency of the pendulum motion,

– antiphase synchronization (Fig. 3(b)), during which the motion of one pendulum (for instance, u3Þ is a mirror reflection
of the motion of the cluster composed of the remaining two pendula. The beam oscillates with a frequency twice as
high as the frequency of the pendulum motion, identically as in the case of the complete synchronization,



Fig. 3. Synchronization of the system with three pendula; (a) complete synchronization versus time, (b) antiphase synchronization versus time, (c) 60� –
phase synchronization versus time, (d) 120� – phase synchronization versus time.
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– 60� – phase synchronization (Fig. 3(c)), during which the phase shifts between the displacements of the pendula are
equal to 60� and the fundamental (i.e., second) harmonics of the beam displacement is equal to zero, thus the beam
is fixed practically;

– 120� – phase synchronization (Fig. 3(d)), during which the phase shifts between the displacements of the pendula are
equal to 120� and the fundamental (i.e., second) harmonics of the beam displacement is equal to zero, thus the beam is
fixed practically.

Fig. 4(a) presents an unstable configuration (quarter-2-1 synchronization), in which the motion of one pendulum (e.g., u1Þ
is phase-shifted by 90� with respect to the displacement of the cluster composed of the remaining two pendula. This
configuration can be observed when we assume the common initial value b20 ¼ b30; the solution to the disturbance equation
Fig. 4. Synchronization of the system with three pendula: (a) unstable quarter-phase synchronization versus time, (b) basins of attraction of various kinds
of synchronization.
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indicates that it is unsteady, however it is a steady synchronization in the system composed of two pendula, in which the
mass of one pendulum is twice as high as the mass of the second one. Fig. 4(b) shows the regions of the initial values b20

and b30, which initiate particular synchronous configurations. The initial value b10 ¼ 0�. As can be seen, similarly as in the
system with two pendula, we observe the domination of the 60� – and 120� – phase synchronizations, during which the
beam remains practically fixed.

4.3. Synchronization of four identical pendula

If four pendula of the same masses and the same periods of oscillations are connected to the beam, then there are possible
four kinds of synchronization, shown in Fig. 5(a-d), as it follows from the above-presented formulas, namely:

– complete synchronization (Fig. 5(a)), during which all the pendula move identically,
– two kinds of antiphase synchronization: antiphase-3-1 synchronization (Fig. 5(b)) and antiphase-2-2 synchronization

(Fig. 5(c)), during which the motion of one cluster is a mirror reflection of the second cluster motion, clusters have
one and three pendula, or two and two pendula, respectively. The beam oscillates with a circular frequency twice
as high as the circular frequency of the pendulum motion, identically as in the case of the complete synchronization.

– 90�+90� – phase synchronization) (Fig. 5(d)), during which we can observe two pairs of pendula in the state of the quar-
ter-phase synchronization, shown in Fig. 2(c). A phase shift between these pairs is not explicitly defined: its value
depends on the initial conditions. Notice that in a 1000 times multiplied displacement of the beam shown in
Fig. 5(d); the fundamental (i.e., second) harmonics of the beam displacement is equal to zero, and, due to such a mag-
nification, the next, fourth harmonics of the beam motion, which does not exist in the solution to the linearized equa-
tion of the beam motion (see Eqs. (18) and (19)), can be seen.

Fig. 6(a,b) shows the regions of the initial values b20 and b30, which initiate individual synchronous configurations. The
initial value b10 ¼ 0�. The initial value b40 ¼ 45� in Fig. 6(a) and b40 ¼ 10� in Fig. 6(b). As can be seen, similarly as in the systems
with two or three pendula, the 90�+90� phase synchronization during which the beam remains fixed in practice dominates.

Fig. 7(a,b) justifies the statement that the phase shift between the pairs of quarter-phase synchronized pendula does
not have a fixed, constant value. In Fig. 7(a), we can observe the displacements of the pendula in the 90�+90�-phase
Fig. 5. Synchronization of the system with four pendula; (a) complete synchronization versus time, (b) antiphase 3-1 synchronization versus time, (c)
antiphase 2-2 synchronization versus time, (d) 90�+90� – phase synchronization versus time.



Fig. 6. Synchronization of the system with four pendula; (a) basins of attraction of various kinds of synchronization, b10 ¼ 0�, b40 ¼ 45�, (b) basins of
attraction of various kinds of synchronization, b10 ¼ 0�, b40 ¼ 10�.

Fig. 7. Synchronization of the system with four pendula; (a) 90�+90� – phase synchronization versus time; the values of displacements presented in
Fig. 7(b) are marked, (b) system motion with disturbances for N = 1000 versus time; positions at the instants u1 ¼ 0, x1 >0, (c) Poincaré map showing the
90�+90� – phase synchronization, N = 900, (d) Poincaré map showing the 90�+90� – phase synchronization, N = 1900.
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synchronization state, initiated by the following initial conditions: b10 ¼ 0�, b20 ¼ 15�, b30 ¼ 30�, b40 ¼ 45�. The displacements
of the pendula at the instant when pendulum 1 goes with a positive velocity through the static equilibrium position are marked
with vertical segments. Fig. 7(b) shows these displacements versus time, during 2000 periods of oscillations. A process of syn-
chronization of the motion of the pendula, which for N = 900 assume the configuration shown in Fig. 7(c), can be seen. For
N = 1000, a disturbance in the motion of the system occurred that consisted in the temporal switching off the van der Pol’s
damper of the first pendulum. When this damper is switched on again for N = 1030, the system motion is synchronized again
in the configuration shown in Fig. 7(d). Fig. 7(c,d) shows the configurations of the system in the form of Poincaré maps on the
phase plane; the state of pendula (xi;uiÞ can be seen at the instant when pendulum 1 goes with a positive velocity through the
static equilibrium position (x1 ¼ U; u1 ¼ 0). In the light of the fact that the dimensionless circular frequency of pendulum
oscillations is equal to 1, for the same ranges of axes of displacements (horizontal) and velocity (vertical), the graphical values
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of amplitudes of displacements and velocities are the same. As the result, the phase angles between the pendula can be read
with a protractor from the maps, so the synchronization state (here: 90�+90� can be easily seen on them. In Fig. 7(c), pendulum
1 goes through the static equilibrium position, that is to say, its state is described by the point (x1 ¼ U; u1=0). Pendulum 2,
which is synchronized with it, is shifted in phase by 90�, i.e., (x2 ¼ 0; u2 ¼ U). Pendula 3 and 4 make the second pair of the
synchronized pendula; the pairs are phase-shifted by tangle c1 ¼ 191� : ðx4 ¼ Ucos191�; u4 ¼ Usin191�Þ; ðx3 ¼
Ucos281�; u3 ¼ Usin281�Þ. The state of the system for N = 1900 is shown in Fig. 7(d). The state of pendulum 1 remains, of
course, unaltered (it decides about the instant the state is recorded). The positions of the remaining pendula have changed.
Pendulum 3 is now synchronized with pendulum 1. The second pair consisting of the synchronized pendula 2 and 4 is shifted
with respect to the first pair by the angle c2 ¼ 155� : ðx4 ¼ Ucos155�; u4 ¼ 0Usin155

�
Þ; ðx2 ¼ Ucos65�; u4 ¼ Usin65

�
Þ.

A further disturbance would result in the next alternation in the angle between the pairs of synchronized pendula. This result
of the numerical experiment, which points out to the fact that four pendula always (despite the cases of the complete or
antiphase synchronization) form two quarter-synchronized pairs, is convergent with the results of the solution to the system
of Eq. (45): there is no other solution to this system than b1...4 ¼ 0�; 90

�
; c; cþ 90�, i.e., a solution of the type (here comes a

faulty example, of course) than b1...4 ¼ 0�, 95�, 150�, 246�.
4.4. Synchronization of five (or more) identical pendula

If five pendula are connected to the beam, then as can be easily expected, the following is possible:

– complete synchronization, during which all pendula move identically.
– two kinds of antiphase synchronization: antiphase-3-2 synchronization and antiphase-4-1 synchronization, during which

the motion of one cluster is a mirror reflection of the motion of the second cluster; the clusters consist of three and two
pendula, or four and one pendula, respectively. The beam oscillates with a frequency twice as high as the frequency of
the pendulum motion, identically as in the case of complete synchronization.

In the case when the number of pendula is higher than four, condition given by Eq. (32) consists of a system of two equa-
tions with four or more unknowns and (as opposed to the above-described case of four pendula) they have an infinitely many
solutions that are not combinations of the solutions known from the systems with two or three pendula. If, for instance, the
Fig. 8. Synchronization of the system with five pendula; (a) motion disturbance versus time for N = 1000, (b) solutions to system of Eq. (45), Poincaré map
showing the configuration of the pendula before disturbance, for N = 900, (d) Poincaré map showing the configuration of the pendula after disturbance, for
N = 1900.
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initial conditions of the pendula are as follow: b10 ¼ 0�; b20 ¼ 120�; b30 ¼ 240�; b40 ¼ 45�; b50 ¼ 135�ð¼ 45� þ 90
�
Þ, then

obviously we can observe a combination of the configuration of 120�-synchronization of three pendula and a quarter-
phase-synchronization of two pendula, but it is not a stable configuration: after a disturbance, we will no longer observe
the combination of synchronous configurations of three and two pendula. The values of phase angles will fulfill the condition
of Eq. (32), but the differences between them will no longer have the characteristic values of 120�, 60� or 90�.

Fig. 8(a-d) (analogous to Fig. 7(a-d)) represents an example of a reaction of the system with five pendula to a disturbance.
In Fig. 8(a) (analogous to Fig. 7(b)), we can observe the displacements of the pendula recorded at the instances when pendu-
lum 1 goes with a positive velocity through the static equilibrium position, initiated by the above-mentioned initial conditions
(b10 ¼ 0�, b20 ¼ 120�, b30 ¼ 240�, b40 ¼ 45�, b50 ¼ 135

�
) as a function of time. A configuration of the pendula for N = 900 is

shown in Fig. 8(c): we can check with a protractor that the phase angles between pendula 1, 2, 3 are equal to 120�,whereas
the phase shift between pendula 4 and 5 equals 90�. For N = 1000, a disturbance in the system motion occurred that consisted
in a switching off the van der Pol’s damper of the first pendulum, which lasted for 30 oscillations. When this damper is
switched on again for N = 1030, the system synchronizes again but in another configuration shown in Fig. 8(d). The following
values of phase angles can be read from it: b1 ¼ 0�, b2 ¼ 83:22�, b30 ¼ 221:70�, b40 ¼ 337:07�, b50 ¼ 106:06� (these values have
been calculated on the basis of the text file of the numerical results – this is the reason for the accuracy up to one hundred part
of the grade). These values do not correspond to any combination of synchronous configurations of two and three pendula.
Fig. 8(b) shows the solutions to Eq. (32) for five pendula. It has been assumed that 2b1 ¼ 0�, 2b50 ¼ 212:12�, whereas the angle
2b4 on the horizontal axis alters from zero to 360�. The blue and red lines represent the values of the angles 2b2 and 2b3, which
together with the formerly defined 2b1, 2b4 and 2b5, fulfill condition (32). The figure shows that for 2b4 ¼ 674:14�ð¼ 314:14

�
Þ,

the angles 2b2 ¼ 166:44�, 2b3 ¼ 443:40�ð¼ 84:40
�
Þ read from Fig. 8(d) fulfill Eq. (32). The next disturbance would lead to a

subsequent change in values of the phase angles. It means that in the system with five pendula (and a higher number of pen-
dula as well) the phase synchronization, during which the beam is fixed, does not take place. There are no constant, charac-
teristic values of phase angles between the group of two and the group of three pendula, regained by the system after the
motion disturbance. The fact that we can observe a periodic motion again after the disturbance does not indicate synchroni-
zation as the periodicity of the motion results from the fact that the pendula are identical and not from the fact that there is a
synchronizing mechanism (WSYNÞ due to each the pendula exert an influence on one another.

To justify clearly the above-mentioned statement about the lack of the phase synchronization, Fig. 9 shows the behavior
of the system with five pendula, which differs from the above-mentioned one only in this respect that the motion of the
Fig. 9. Synchronization of the system with five pendula – the beam displaces horizontally; (a) motion disturbance versus time for N = 1000, (b) Poincaré
map showing the synchronous configuration of the pendula before disturbance, for N = 900 – three clusters, (c) Poincaré map showing the synchronous
configuration of the pendula after disturbance, for N = 1900 – three clusters again.
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beam takes place along the horizontal direction and not the vertical one [4–6,10,14]. Beginning with the same initial condi-
tions (b10 ¼ 0�, b20 ¼ 120�, b30 ¼ 240�, b40 ¼ 45�, b50 ¼ 135�), the system attains the synchronous configuration shown in
Fig. 9(b) – the pendula form three clusters. The first cluster consists of pendula 1+3, the second one – of pendula 2+4,
and the third one is represented by a single pendulum 5. When the motion is disturbed for N = 1000, the pendula form a
synchronous configuration composed of three clusters again. This time the first cluster is composed of one pendulum, the
second one – of pendula 2+4, and the third one – of pendula 3+5. As can be seen, the disturbance is so strong that the clusters
are decomposed, and the system returns to the configuration of three clusters composed of the same number of pendula and
shifted by the same phase angles. Here, in the system with the beam displacing horizontally, we can see a phenomenon of
the phase synchronization indeed. In the system with the beam displacing vertically – it is not the case.
5. Conclusions

If a series of identical van der Pol’s pendula is suspended on the rigid beam that can displace along the vertical direction,
then a phenomenon of synchronization of 2, 3 or 4 pendula can be observed that consists in establishing phase angles which
have constant characteristic values. The resultant force the pendula exert on the beam is (in the linear approximation) har-
monic, with a period twice as short as the period of pendulum oscillations or equal to zero (there is also its fourth harmonics,
but only in solutions to nonlinear equations). Contrary to this case in the systems in which the beam displaced along the
horizontal direction, this force had the first and third harmonics [4–6,10].

The following configurations of synchronized pendula have been identified, namely:

(i) the beam displaces with the ‘‘second harmonics’’,:
- complete synchronization when all the pendula displace identically, forming one cluster;
- antiphase synchronization of two clusters of a different, dependent on the initial conditions, number of pendula;
independently of the number of pendula in these two clusters, the beam moves in the same way (its motion is iden-
tical as the motion which can be observed during the complete synchronization),

(ii) the forces the pendula act on the beam balance and the beam is (in the linear approximation) fixed:
- quarter-phase synchronization of two pendula shifted in phase by 90�;
- 60� – or 120� – synchronization of three pendula;
- 90�+90�-synchronization of four pendula: two pairs of pendula are in the state of the quarter-phase synchronization;
the phase angle between these pairs is accidental: its value depends on the initial conditions; when the motion is dis-
turbed, the system will return to the state of the 90�+90� – synchronization but this angle will change then.

The type of coupling considered in our studies is nonlocal [20] as each pendulum influences the motion of all other pen-
dula through the motion of the beam. For the periodic motion of the pendula the observed phase shifted states can be con-
sidered as the special case of lag synchronization [15].

In the case when the system is composed of five or more pendula, a complete synchronization and antiphase synchroni-
zation of two clusters with a various number of pendula takes place. In such systems, the phase synchronization, during
which the beam is at rest, has not been found; however, the suitable initial conditions lead to the state in which the forces
the pendula exert on the beam balance out and the beam remains at rest, but the angles between the displacements of the
pendula have accidental values, depending on the initial conditions and altering due to disturbances. The motion of the sys-
tem is periodic of course, but this periodicity does not follow from the synchronizing role of the synchronization work WSYN ,
but solely from the fact that identical pendula have the same periods of oscillations and the motion of the system composed
of them is periodic even if the beam which is suspended on them is fixed and the pendula cannot affect the motion of one
another – they cannot adapt mutually in phase. This conclusion is basically different from the conclusion based on the obser-
vation of the systems with many pendula suspended on the beam that displaces horizontally, where the phenomenon of
combining the pendula in three (or seldom five) synchronized clusters occurs.

The results of the numerical simulations conducted for the nonlinear model of the mathematical system have confirmed
the usefulness and correctness of the predictions based on the linearized equation of the beam motion, on the assumption of
the harmonic motion of the pendula. The observed synchronous configurations are robust as they exist for the wide range of
system parameters and initial conditions. They are stable in the presence of noise (unless the perturbation does not move the
system out of the basin of attraction of the particular configuration).
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