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Abstract: We study the synchronization of a number of pendula mounted on a horizontal 
beam which can roll on the parallel surface. Under the driving moment, the pendula rotate in 
different directions: one of them rotates counterclockwise, the rest rotate clockwise. It has 
been shown that after a transient different types of phase synchronization between pendula 
can be observed, despite opposite directions of rotations.  

 

 

1. Introduction 

Mechanical systems that contain rotating parts (for example vibro-exciters, unbalance 
rotors) are typical in engineering applications and for years have been the subject of intensive 
studies [1-3]. One problem of scientific interest, which among others occurs in such systems 
is the phenomenon of synchronization of different rotating parts [4,5 and references within]. 
Despite different initial conditions, after a sufficiently long transient, the rotating parts move 
in the same way - complete synchronization, or a permanent constant shift is established 
between their displacements, i.e., the angles of rotation - phase synchronization [6-8]. 
Synchronization occurs due to dependence of the periods of rotating elements motion and the 
displacement of the base on which these elements are mounted [9]. Prasad [10] considers the 
system of coupled counter-rotating oscillators and observes a mixed synchronizations, i.e., 
some systems’ variables are synchronized in-phase, while others are out-of-phase.  

Recently, the rotational motions of the pendulum attracted more interest due to the 
concept of extracting energy from sea waves using pendulum dynamics proposed by 
Wiercigroch [11]. The examples of such studies can be found in [12-19]. This interest 
motivated us to pose the question; under which condition can slowly rotating pendula 
synchronize.  

In the previous paper [20] we consider the dynamics of the system consisting of n 
pendula mounted on the movable beam. The pendula are excited by the external torques 
which are inversely proportional to the angular velocities of the pendula. As the result of such 
excitation each pendulum rotates around its axis of rotation. It has been assumed that all 
pendula rotate in the same direction. We consider the case of slowly rotating pendulums and 
consider the influence of the gravity on their motion. It has been shown that both complete 
and phase synchronizations of the rotating pendula are possible. We derive the approximate 
analytical conditions for both types of synchronizations and equations which allow the 
estimation of the phase differences between the pendula. Contrary to the case of oscillatory 
pendulums [21,22] phase synchronization is not limited to three and five clusters 
configurations. Our results have been compared to these of [4].  

In this paper we study the dynamics of the similar system as in [20] but this time we 
assume that one pendulum (numbered 1) rotates counterclockwise, i.e., has a positive angular 
velocity angular while the remaining pendula rotates clockwise with negative angular 
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velocity. We consider two cases: (i) pendula rotate in the horizontal plane, i.e., the gravity has 
no influence on their motion, (ii) pendula rotate in the vertical plane and the weight of them 
causes the unevenness of their rotation, i.e., the pendula slow down when the center of its 
mass goes up and accelerates when the center of its mass goes down. We show that in such 
systems, despite opposite directions of rotation different types of synchronization occur. We 
give evidence that our results are robust as they exist in the wide range of system parameters. 

The paper is organized as follows. In Sec.2 we describe the considered model of the 
coupled rotating pendulums. Section 3 presents the analytical studies which allow to derive 
the synchronization condition. The examples of the configurations of the synchronized 
pendulums are given in Sec. 4. Finally, we summarize our results in Sec. 5. 

 

2. The model 

We consider the system shown in Figure 1. It consists of a rigid beam of mass M on which  n 
identical rotating pendula are mounted. The beam is connected to a stationary base by the 
spring with a stiffness coefficient kx and a damper with a damping coefficient cx. Due to the 
existence of the forces of inertia, which act on each pendulum pivot, the beam can move in 
the horizontal direction (this motion is described by coordinate x). The masses of the pendula 
are indicated as m. B is the moment of inertia with respect to the axis of rotation. l is the 
distance from the axis of rotation to the center of the pendulum's mass. Rotation of the i-th 
pendula is described by i. The rotations of the pendula are damped by linear dampers (not 
shown in Figure 1) with damping coefficient c. Each pendulum is driven by the drive 
moment inversely proportional to their velocity: 10 NN ii  . If any other external forces do 

not act on the pendulum, then under the action of such a moment it rotates with constant 
angular velocity. If the system is in a gravitational field (g=9.81[m/s2] - acceleration of 
gravity), the weight of the pendulum causes the unevenness of its rotation: the pendulum 
slows down, when the center of mass rises up and accelerates when the center of mass falls 
down. It is assumed that N1>0.0. If N0i torque is positive, the pendulum rotates to the left 
having a positive value of the instantaneous angular velocity, if N0i<0.0, the pendulum rotates 
to the right with a negative angular velocity. 

The equations of motion described above are as follows: 
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where i=1,2,…n. In our numerical simulations eqs.(1,2) have been integrated by the 4th order 
Runge-Kutta method. The obtained results confirmed the existence of the phenomenon of 
phase synchronization in the considered system and allowed the determination of phase 
angles between the synchronized pendula. Additionally the numerical integration of eqs.(1,2) 
allows the determination of the basins of attraction of different coexisting configurations of 
the synchronized pendula. We use the following parameters' values: m=1.00 [kg], l=0.25 [m], 
c=0.01 [Nsm], N1=0.50 [Nsm], M=6.00 [kg]. It has been considered that pendulum 1 rotates 
counterclockwise and pendula 2,…n clockwise so N01=5.00 [Nm], N0i=-5.00 [Nm] (i=2,…,n). 
We assume that at the initial state: x0=0.0, 00 x  (the beam is at rest) and the pendula are 
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rotating in opposite directions with equal velocities 0.10110  [s-1], 0.100  ii  [s-1], 

i=2,…,n. Other initial conditions are given by the pendula’s initial positions φi0.  

 

3. Synchronization condition - linearized model 

In this section we derive the approximate analytical conditions for synchronization of rotating 
pendula. Following the idea of Blekhman [4] to explain the phenomena of synchronization we 
determine and analyze the work done by the momentum with which the i-th pendulum acts on  
beam - Wi

SYN. 

In our analysis we assume that the system consists of three identical pendula. This 
assumption allows the derivation of the approximate analytical result which explains the 
synchronization of two and three pendula and can be generalized for larger number of 
pendula. It also justifies the existence of clusters (groups of pendula with identical behavior. 
We assume that the pendula's angular velocities are constant, i.e., the fluctuations of the 
pendula's angular velocities caused by the motion in the gravitational field are so small that 
can be neglected. Hence, the pendula's accelerations are equal to zero and one gets linear 
functions describing the pendula's angles of rotation:  
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The right side of equation (2) shows the resultant force, which acts on the beam: 
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After the transformation: 
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Substituting eq. (5) to the equations of motion of the beam (2) and denoting 
,nmMU             (6) 

one gets 
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Assuming that the damping coefficient cx is small the functions describing the displacement 
and acceleration of the beam can be rewritten as 
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The equation of motion of each pendulum (1) has a component  
.cos k

SYN
k xmlM            (11) 

that is called the synchronizing momentum. This is the momentum of the force with which the 
beam acts on the k-th pendulum. The work done by this torque increases or decreases the 
energy of the k-th pendulum. In the synchronous state pendula's motion is periodic so the 
work done by these momenta during one period of rotation is equal to zero: 
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Substituting eqs. (3) and (9) into eq. (12) one gets 
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After the transformation the following equations can be obtained 
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Eqs.(14) allow the calculation of the value of phase angles i  at which the motion of 
pendulums synchronization occurs, and thus the motion of the system is periodic. 

In the case of n=2 pendula, i.e., assuming that m3=0 and 1=0.0 eqs.(14) get the form 
of two identical equations: 
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which are fulfilled in two cases: (i) 2=0.0o -  the mirror-synchronization (M) shown in Figure 
2(b),  (ii) 2=180.0o  - the antiphase synchronization (A) shown in Figure 2(d). 

For three pendula, i.e., assuming that 1=0.0, eqs.(14) get the following form: 
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and eqs.(16) are fulfilled for: (i)  2=-60.0o and  3=-300.0o  - the  tree-synchronization (T) 
shown in Figure 4(a), (ii) 2=3= 180.0o – the cluster-antiphase synchronization (CA) shown 
in Figure 4(b). 
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4. Examples 

4.1 Synchronization of 2 and 3 pendula (the lack of gravity) 

In order to confirm the analytical results of Sec. 3 we perform the numerical simulations of 
eqs.(1,2). Stiffness coefficient kx has been taken as a control parameter in such a way  that the 
base is above or below the resonance, i.e.,  to the frequency  

.
U

kx
x             (17) 

is smaller or larger than the pendulum's 1 angular velocity 1. The damping coefficient cx has 
been selected in such a way as to be equivalent to the arbitrarily selected logarithmic 
decrement of damping =ln(1.5). As such a damping does not significantly change the period 
of the beam's free oscillations cx can b calculated from the formula 
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The value of the parameter g in eqs. (1) is equal to zero - this can be interpreted as the case in 
which the pendula are rotating in the horizontal plane. The results obtained for the system 
with two pendula are shown in Figure 2(a-d). Figure 2(a) shows the time series of the 
pendula's angular velocities 1 and 2  for the small value of the stiffness coefficient kx=500.0 

[N/m] (so x=(500.0/8.0)0.5=7.91<10.0=1 and the system is below the resonace). On the 
horizontal axis time is given by  21tK  , i.e., the number of rotations of the pendulum 1 

(rotating with the angular velocity 1). In our calculations we use the following initial 
conditions: 10=0.0o, 20=-90.0o. As one can see, after a short (several rotations) transient 
caused by the motion of the beam, pendula's angular velocities tend to their initial values 1 
and 2. Figure 2(b) shows the sum of pendula's angular displacements 12   . As one can 
see this sum (after the transitional period) is constant and equal to zero, which means that 

12   . This state is the mirror-synchronization (M) as the rotational motion of pendulum 2 
is a mirror image of the rotation motion of pendulum 1 and the beam is at rest as shown in 
Figure 2(b). The pendula pass each other as going through the vertical plane of symmetry 
(1=0.0o  2=0.0o or 1=180.0o  2=-180.0o).  For the same value of the stiffness 
coefficient but different initial conditions one can observe a different type of synchronization. 
For example for: 10=0.0o, 20=-215.0o, after a transient the sum of pendula's displacements 

12    reaches the value o
12 180  as shown in Figure 2(d). The pendula's velocities 

(Figure 2(c)) fluctuate around the averaged values smaller (by absolute values) than initial 
values 1 and 2. These fluctuations are caused by the oscillations of the beam. This type of 
synchronization is the antiphase-synchronization (A). The pendula pass each other as going 
through the horizontal plane of symmetry (1=90.0o  2=-270.0o or 1=270.0o  2=-90.0o. 

The influence of the stiffness coefficient kx and initial position of the pendulum 2 - 20 
on the type of synchronization is illustrated in Figure 3 (initial position of pendulum 1 –  
10=0o). One can see that for the small values of the stiffness coefficient kx<453.0 [N/m] for 
all values of 20 the mirror-synchronization occurs. In the interval  453.0< kx<758.0 [N/m] 
depending on the initial condition 20 either mirror- or antiphase- synchronization occurs. For 
kx>758 [N/m] and any value of 20 we observe the antiphase-synchronization. 

Figure 4(a) presents the sums of pendula's displacements 12   , 13    for the small 

stiffness coefficient kx=200.0 [N/m] (x=(200.0/9.0)0.5=4.71<10.0=1). The following initial 
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conditions have been used: 10=0.0o, 20=-60.0o, 30=-240.0o. One can see that after the initial 
transient the sum 12    reaches the constant value -60o and the sum 13    reaches the 

constant value -300o. This type of synchronization (shown at the diagram in Figure 4(a) for 
1=0.0o) is the tree-synchronization (T) (for different initial conditions one observes 
symmetrical configuration in which pendula 2 and 3 are respectively in the right and in the 
left hand sides of the diagram). Increasing the value of the stiffness coefficient to kx=1000.0 
[N/m] (x=(1000.0/9.0)0.5= =10.54>10.0=1, i.e., the beam is above the resonance) and 
changing the pendula's initial position to  10=0.0o, 20=-180.0o, 30=-90.0o (other initial 
conditions are as in the case shown in Figure 4(a)) one gets the synchronous state in which 
pendula 2 and 3 (rotating to the left) create the cluster (their displacements are the same) – 
Figure 4(b). The sum of displacements of any pendulum in cluster and pendulum 1 - 

12   = 13    reaches the value 180o, which justifies the name cluster-antiphase-

synchronization (CA).  The pendula's configuration during this type of synchronization is 
shown at the diagram in Figure 4(b) (for 10=0.0o). Figure 4(c) shows the basins of existance  
of both types of synchronization at the plane kx-30. We consider 10=0.0o, 20=-135o and 
other initial conditions as in Figure 4(a). For kx<330 [N/m] and all initial conditions we 
observe (T) synchronization. In the interval 330<kx<460 [N/m] the type of synchronization 
depends on initial conditions. For kx>460 [N/m] independently of the initial conditions the 
system reaches (CA) synchronization.  

 
4.2 Synchronization of two pendula (in the gravitational field) 

In the simulations shown in Figure 5(a-d) we consider the system of two pendula rotating in 
the vertical plane, i.e., considering the effect of gravity (g=9.81 [m/s2]). Figure 5(a) presents 
time series of the pendula's angular velocities 1 and 2  for the small value of the stiffness 

coefficient  kx=500.0 [N/m], so x=(500.0/8.0)0.5=7.91<10.0=1. The pendula rotate in 
opposite directions with constant velocities 0.10110  [s-1], 0.10220  [s-1] starting 

from the initial positions: 10=0.0o, 20=-45.0o. One can see that after the initial transient 
(several rotations) caused by the oscillations of the beam the pendula's velocities fluctuate 
(due to the gravity) around the initial values 1 and 2. Figure 5(b) shows time series of the 
sum of pendula's displacements 12   . One can see that this sum (after the initial transient) 

is constant and equal to zero so 12   . This type of synchronization is the mirror-
synchronization (M) as the rotational motion of pendulum 2 is the mirror image of the 
rotations of pendulum 1 as can be seen at the diagram shown in Figure 5(b). For the small 
value of the stiffness coefficient kx=500.0 [N/m] and different initial conditions 10=0.0o, 
20=-215.0o one can observe different type of synchronization as shown in Figure 5(c,d). 
After the initial transient the pendula's velocities (as in the previous case) fluctuate around the 
initial values 1 and 2 (Figure 5(c)). The sum of pendula's displacements 12    fluctuates 

around the constant averaged value o
12 180   as shown in Figure 5(d). We call this 

type of synchronization the antiphase-synchronization (A). For the larger values of  kx the 
next type of synchronization can be observed. Figure 6(a,b) illustrates pendula's 
synchronization for large values of the stiffness coefficient  kx=3000.0 [N/m] and 
x=(3000.0/8.0)0.5=19.36>10.0=1. We consider the following initial conditions: 10=0.0o, 
20=-270.0o. After the initial transient the sum of pendula's displacements 12    fluctuates 

around constant averaged value   12   close to -270o as shown in Figure 6(a). We call 
this type of synchronization the third-quarter-synchronization (3Q). When pendulum 1 passes 
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through the static equilibrium position pendulum 2 approaches the horizontal plane of 
symmetry (1 = 0.0o 2  -270.0o).  

For different initial conditions: 10=0.0o, 20=-90.0o, after the initial transient the sum 
of pendula's displacements 12    fluctuates around constant averaged value  12   
closed to -90o as shown in Figure 6(b). This type of synchronization has been called the first-
quarter-synchronization (1Q). When pendulum 1 passes through the static equilibrium 
position pendulum 2 leaves the horizontal plane of symmetry (1 = 0.0o 2  -90.0o). The 
pendula's configurations during (1Q) and (3Q) synchronizations are shown at diagrams in 
Figure 6(a,b). (3Q) and (1Q) synchronizations are not observed when one neglects the effect 
of gravity or when the pendula rotate in the horizontal plane. In both cases the pendula's 
velocities oscillate around the initial values 1 and 2 as in the examples shown in Figure 
5(a,c). 

The influence of the stiffness coefficient kx and initial conditions on the type of 
synchronization is discussed in Figure 7(a-d). Figure 7(a) presents the averaged value of the 
sum of pendula's displacements <2+1> versus stiffness coefficient kx. For all values of kx 
the motion of the system is initiated from the same initial conditions. In Figure 7(a) we show 
the averaged value of the sum of pendula's displacements <2+1> versus the stiffness 
coefficient kx for the following initial conditions: 10=0.0o, 20=-270.0o. One can see that for 
the small values of the stiffness coefficient kx<360.0 [N/m], the value of <2+1>=0o and the 
system is in the state of mirror-synchronizaton (M). For kx=360.0 [N/m] the value of <2+1> 
jumps to -180o and in the interval 360.0<kx<1910.0 [N/m] we observe antiphase-
synchronization (A). For kx =1910.0 [N/m] the next jump of <2+1> (to the value of -240o) 
occurs and the type of synchronization is changed to the third-quarter-synchronization (3Q). 
In the interval 1910.0<kx<5000.0 [N/m] in the state of the third-quarter-synchronization (3Q) 
the value of <2+1> initially decreases down to the value -254o and later increases up to the 
value -180o, so we observe the return to the state of antiphase-synchronization (A). Figure 
7(b) shows the value of <2+1> versus kx for different initial conditions (we change the 
value of 20 from 20=-270.0o to 20=-270.0o). As in Figure 7(a) for small values of kx first we 
observe the state of the mirror-synchronizaton (M) and next the antiphase-synchronization 
(A). The jump of the value of <2+1> to -118o, observed for kx =1960.0 [N/m], indicates the 
change of the type of synchronization to the first-quarter (1Q). In the interval 
1960.0<kx<5000.0 [N/m] in the state of the first-quarter-synchronization, the value of 
<2+1> initially increases up to -104o and next decreases down to -180o, so we observe the 
return to the state of antiphase-synchronization (A). Figure 7(c) presents the influence of the 
initial conditions 10 and 20 on the type of synchronization for the small value kx=500.0 
[N/m] (types (M) and (A) are observed) while Figure 7(d) shows basins of (3Q) and (1Q) for 
large value of  kx=3000.0 [N/m]. 

The influence of the stiffness coefficient kx and initial position of pendulum 2 - 20 on 
the type of synchronization is discussed in Figure 8. We assume the initial position of the 
pendulum 1 - 10=0o. One can see that for small values of the stiffness coefficient kx<425.0 
[N/m] and any value of 20 the mirror-synchronization (M) occurs. In the interval 
425.0<kx<760.0 [N/m], depending on  initial condition 20 one observes mirror (M) or 
antiphase (A) synchronization. (A) and (M) types of synchronization observed for kx=500.0 
[N/m] are shown in Figure 7(c). In the interval 760.0<kx<1960.0 [N/m] for any value of 20 
antiphase-synchronization (A) occurs. For kx>1960.0 [N/m] depending on initial condition 20 

we observe the third-quarter (3Q) or the first-quarter (1Q) synchronization. (1Q) and (3Q) 
types of synchronization observed for kx=3000.0 [N/m] are shown in Figure 7(d). 
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4.3. Synchronization of three pendula (in the gravitational field) 

In the simulations of the system of three pendula rotating in the vertical plane, i.e., 
considering the effect of gravity, we use the same parameter values as in example 4.2 and 
additionally consider N03=-5.00 [Nm], i.e., pendulum 1 rotates counterclockwise and pendula 
2 and 3 clockwise. 

Figure 9(a-d) shows time series of the sum of pendula's displacements 12    and 

13    during four different synchronous states. In Figure 9(a) we present time series for  the 

case of small stiffness coefficient kx=200.0 [N/m], so x=(200.0/9.0)0.5=4.71<10.0= and the 
following initial conditions: 10=0.0o, 20=-60.0o, 30=-240.0o. After the initial transient the 
sum of pendula's displacements 12    fluctuates around constant averaged value 

approximately equal to -60o, and the sum 13   , fluctuates around the averaged value close 

to -300o. This type of synchronization we call the tree synchronization (T). The pendula's 
configuration for 1=0.0o is shown at the diagram in Figure 9(a). Increasing the value of the 
stiffness coefficient to kx=1000.0 [N/m] (so x=(1000.0/9.0)0.5= 10.54>10.0= and the beam 
oscillations are above the resonance) and changing the initial positions of the pendula to 
10=0.0o, 20=-180.0o, 30=-90.0o (other initial conditions are the same as in Figure 9(a) one 
observes the synchronous state in which pendula 2 and 3 (rotating to the left) create the 
cluster (their displacements are identical) as shown in Figure 9(b).The sum of the 
displacements of any pendulum in cluster and pendulum 1 12   = 13    fluctuates around 

constant average value < 12   >=< 13   > approximately equal to -180o and we observe 

the cluster-antiphase-synchronization (CA). The pendula's configuration during this type of 
synchronization for 1=0.0o is shown at the diagram in Figure 9(b). Additionally in the system 
with three pendula one can observe four new types of synchronization which occur due to the 
existence of gravity and the change of the amplitude and phase of the beam's oscillations (as 
the result of the increased value of the stiffness coefficient kx). For kx=3000.0 [N/m] and 
initial conditions 10=0.0o, 20=-250.0o, 30=-80.0o, we observe the type of synchronization 
similar to (T) synchronization but with obtuse angles between pendulum 1 and pendula 2,3 as 
shown at the diagram in Figure 9(c). We call this synchronization the yankee 32 (Y32) -
synchronization. For different initial conditions one can observe the pendula's configuration 
which is the mirror image of (Y32), i.e., pendulum 3 is on the right side and pendulum 2 on 
the left side of the diagram. This configuration is called the yankee 23 (Y23) –
synchronization. For the same value of the stiffness coefficient kx and initial conditions: 
10=0.0o, 20=-250.0o, 30=-180.0o we observe the type of synchronization shown in Figure 
9(d). This synchronization is similar to (CA) synchronization, but the angle between the 
cluster (of pendula 2 and 3) and pendulum 1 is approximately equal to -270o (the cluster-
right-synchronization (CR)) or -90o (the cluster-left-synchronization (CL)).  

Figure 10(a-d) shows the influence of stiffness coefficient kx on the type of the 
synchronous state. The averaged values of the sums of pendula's displacements < 12   > and 

< 13   > versus kx are shown. For all values of kx the motion of the system is initiated from 

the same initial conditions. In the system with small stiffness coefficient kx one observes (T) 
type synchronization as can be seen in Figure 10(a-d). For larger values of kx we observe (CA) 
synchronization and finally for kx>2200÷2400 [N/m] (exact value depends on φ30) two other 
types of synchronization (CR) and (Y32) and their mirror images (CL) and (Y23) are possible. 
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Figure 10(a-d) shows that the values < 12   > and < 13   > are changing with the change 

of kx, so the descriptions of the pendula's configurations in different types of synchronizations 
with the statements about the angles close to 180o in the case of (CA) or 270o and 90o in the 
case of (CR) and (CL) present only the qualitative differences. Particularly in Figure 10(c) the 
distinction between (CA) and (CL) synchronization is arbitrary, due to the continuous change 
of the angle between cluster (pendula 2 and 3) and pendulum 1. In the other cases the 
distinction between different types of synchronization is justified by the jump changes of 
angles < 12   > and (or) < 13   >. The cross sections shown in Figure 10(a-d) are 

indicated in Figure 11(a). Figure 11(a) shows the basins of existence of different types of 
synchronization on the plane kx-30. We consider the following initial conditions 10=0.0o, 
20=-135o. Figure 11(b) shows the enlargement of Figure 11(a) for 200<kx<400 [N/m]. From 
Figure 11(a,b) one can conclude that for stiffness coefficient kx<2200÷2400 [N/m] one can 
observe either (T) (kx<300÷370 [N/m]) or (CA) synchronization (300÷370<kx<2200÷2400 
[N/m]). The type of synchronization depends on the value of kx only in the neighborhood of 
the boundaries between basins (T) and (CA) as shown in 11(b) and 11(d). Figure 11(d) 
presents the cross section of Figure 11(b) on level kx=325 [N/m] which shows the coexistence 
of (T) and (CA) synchronizations for different initial conditions 20 and 30. For larger values 
of kx we observe the coexistence of four types of synchronization as can be seen in Figure 
11(a,c). Figure 11(c) is the cross section of Figure 11(a) at level kx=3000 [N/m].  

 

4.4 Larger systems 
In an attempt  to generalize the results of Secs. 4.1-4.3 to the system with larger number of 
pendula we perform simulations of such systems. Figure 12(a,b) shows results obtained for 
the case in which pendula oscillate in the horizontal plane (i.e., g=0.0). In Figure 12(a) we 
show the time series of the sum of pendula's displacements 1 i  (i=2…6) for the small 

stiffness coefficient kx=200.0 [N/m]. The following initial conditions have been used: 
10=0.0o, 20=-5.0o, 30=-10.0o, 40=-15.0o, 50=-20.0o, 60=-25.0o. After the short transient 
(several rotations) the sums of pendula's displacements tends to the constant values close to 
0o, 90o and 120o (the exact values can be calculated from the equations equivalent to eqs. 
(16). Observed synchronization is analog to the tree-synchronization (T) described for the 
system with three pendula. Similar configurations in which the pendula are not grouped in 
clusters have been observed in the systems with larger number of pendula. Figure 12(b) 
shows that the increase of the stiffness coefficient to kx=2000.0 [N/m] leads to the change of 
the synchronization type to cluster-antiphase-synchronization (CA). Neglecting the influence 
of gravity we obtain this type of synchronization independently of initial conditions for 
sufficiently large values of kx . 

Figure 13(a-d) shows examples of pendula's configurations for the system in which 
pendula rotate in the vertical plane (i.e., g=9.81 [m/s2] in eqs.(1-2)). In Figure 13(a) we show 
the sums of pendula's displacements 1 i (i=2…6) for the system with small stiffness 

kx=200.0 [N/m]. The same initial condition as in the example of Figure 12(a) have been used. 
One can see that after the initial transient (several rotations) the sums of pendula's 
displacements fluctuate around constant values close to these observed in Figure 12(a), i.e., 
0o, 90o and 120o. This type of synchronization is equivalent to the  tree-synchronization (T). 
Figure 13(b) presents that the increase of the stiffness coefficient to kx=2000.0 [N/m] leads to 
the change of the type of synchronization to the cluster-antiphase (CA) (similarly to the case 
shown in Figure 12(b)). Figure 13(c,d) shows that with further increase of the stiffness 
coefficient, e.g. to the value kx=3000.0 [N/m] the type of synchronization depends on the 
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initial conditions as one can observe either (CL) (Figure 13(c)) or Yankee (Figure 13(d)) 
synchronization. 

Generally in the systems with large number of pendula we observe the same types of 
synchronizations as described for three pendula in Secs. 4.1 and 4.3. Probability of the 
appearance of the yankee type of synchronization decreases with the increase of the number 
of pendula. 

 

5. Conclusions 

In the system in which the pendula rotate in opposite directions one can observe different 
types of synchronization. During the synchronous motion the average (over the period of 
rotation) value of the sum of angular displacements of pendula rotating to the right and left is 
constant. Our approximate analytical studies of synchronization momenta, i.e., momenta 
responsible for energy transfer between pendula, allow prediction of the mirror (M), antiphase 
(A) synchronization in the system of n=2 pendula and tree (T) and cluster antiphase (CA) 
synchronization in the system of n=3 pendula. These types of synchronization occur for both 
horizontal (without gravity) and vertical (in the gravitational field) planes of pendula rotation.  

Numerical simulations confirm the existence of these types of synchronization. In the 
system with two pendula they additionally show that due to gravity, at sufficiently large 
values of the stiffness coefficient of stiffness kx, one can observe two modifications of the (A) 
type synchronization, namely the first-quarter (1Q) and the third-quarter (3Q) 
synchronization. In the system with three pendula we show that the analytically predicted tree 
(T) and cluster antiphase (CA) types of synchronization occur independently of the 
consideration of gravity. For pendula rotation in the gravitational field one can also observe, 
for sufficiently large values of the stiffness coefficient kx, two modifications of the (T) type, 
i.e., yankee (Y23) and yankee (Y32) synchronization and two modifications (CA) type: (CL) 
and (CR) synchronization. The types of synchronization which have been observed for the 
sysyems with two and three pendula together with the conditions for their occurrence are 
summarized in Table 1. 

The types of synchronous configurations identified for the system of three pendula can 
be observed in the systems with larger number of pendula. Contrary to the case of oscillating 
pendulums [21,22] rotating pendula are not grouped in three or five clusters only. The lack of 
this restriction causes that in the system (1,2) depending on initial condition one can observe a 
great variety of different synchronization configurations. The number of configurations grows 
with a number of pendulums n.  

The system with identical pendula which rotate with the same (as to the absolute 
values) angular velocities located on the beam M which can oscillate horizontally (i.e., kx<∞) 
always reaches the state of synchronization. In the case of the non-movable beam M (kx=∞) 
when the pendula cannot interact as their velocities have the same absolute values and 
constant phase differences between pendula are constant and defined by the initial conditions. 
When the oscillations of the beam M allow the interaction between pendula the process of 
synchronization is initiated and the phase differences between pendula’s rotations tends to 
some characteristic values, e.g.: 0, 180o, 270o, etc. (in the case of pendula rotating in the 
horizontal plane) or oscillate around these values (in the case of pendula rotating in the 
vertical plane). 

The lack of synchronization, i.e., a state in which such 1+2 is not constant or 
periodic (when pendula rotate in horizontal plane) is observed in certain ranges of parameters 
in the system of pendula with different masses which rotate with different angular velocities 
but the results of these studies will be report elsewhere [23]. 
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Practical applications of the devices with rotating links (pendulums) can be divided 
into two classes: (i) devices in which the large oscillations of the pendula’s base are desired, 
e.g.: shakers, mixers, sieve, etc., and (ii) devises in which the large oscillations of the 
pendulums’ base are not desired, e.g., several machines with unbalanced links located on the 
flexible ceiling. Our results can be useful for the designers of the devises with rotational links 
as they show what types of synchronization can be expect and allow estimation of the impact 
on the pendula’s rotation on the base. 
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Figure 1: Pendula suspended on the movable beam. 
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Figure 2. (color online) Mirror-synchronization (M) and antiphase-synchronization (A) of 2 
pendula in the case of the lack of gravity (g=0): (a) pendula's velocities during mirror-
synchronization, kx=500[N/m], 10=0o, 20=-90o; (b) pendula's displacements during mirror-
synchronization, kx=500[N/m], 10=0o, 20=-90o; (c) pendula's velocities during antiphase-
synchronization, kx=500[N/m], 10=0o, 20=-215o; (d) pendula's displacements during 
antiphase-synchronization, kx=500[N/m], 10=0o, 20=-215o. 
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Figure 3: (color online) Type of synchronization of 2 pendula versus stiffness coefficient kx 
and initial position of pendulum 2 - 20, initial positions of pendula 1: 10=0o. 
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Figure 4. (color online) Different types of synchronization of 3 rotating pendula in the case of 
lack of gravity (g=0): (a) pendula's displacements during tree-synchronization (T), 
kx=200[N/m], 10=0o, 20=-60o, 30=-240o; (b) pendula's displacements during cluster-
antiphase-synchronization (CA), kx=1000[N/m], 10=0o, 20=-180o, 30=-90o; (c) type of 
synchronization versus stiffness coefficient kx and initial position of pendulum 3 - 30, initial 
positions of pendula 1 and 2: 10=0o, 20=-135o; 
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Figure 5: (color online) Mirror-synchronization (M) and antiphase-synchronization (A) of 2 
pendula; (a) pendula's velocities during mirror-synchronization, kx=500[N/m], 10=0o, 20=-
45o; (b) pendula's displacements during mirror-synchronization, kx=500[N/m], 10=0o, 20=-
45o; (c) pendula's velocities during antiphase-synchronization, kx=500[N/m], 10=0o, 20=-
215o; (d) pendula's displacements during antiphase-synchronization, kx=500[N/m], 10=0o, 
20=-215o. 
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Figure 6: (color online) Third-quarter-synchronization (3Q) and first-quarter-synchronization 
(1Q) of 2 pendula; (a) pendula's displacements during third-quarter-synchronization: 
kx=3000.0[N/m], 10=0o, 20=-270o; (b) pendula's displacements during first-quarter-
synchronization: kx=3000.0[N/m], 10=0o, 20=-90o. 
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Figure 7: (color online) The influence of the stiffness coefficient kx on the type of 
synchronization of 2 pendula: (a) average value of the sum of the pendula's displacements 
<2+1> versus kx: 10=0o, 20=-270o; (b) average value of the sum of the pendula's 
displacements <2+1> versus kx: 10=0o, 20=-90o; (c) mirror- and antiphase- 
synchronization for different initial conditions: kx=500[N/m]; (d) third- and first- quarter-
synchronization for different initial conditions: kx=3000[N/m]. 
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Figure 8. (color online) Different types of  synchronization of 2 pendula versus stiffness 
coefficient kx and initial position of pendulum 2 20: initial position of pendulum 1 
10=0o. 
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Figure 9: (color online) Different types of  synchronization of 3 rotating pendulums: (a)  tree 
synchronization (T), kx=200.0[N/m], 10=0o, 20=-60o, 30=-240o; (b) cluster-antiphase-
synchronization (CA), kx=1000.0[N/m], 10=0o, 20=-180o, 30=-90o; (c) yankee-32-
synchronization (Y32), kx=3000.0[N/m], 10=0o, 20=-250o, 30=-80o; (d) cluster-right-
synchronization (CR), kx=3000.0[N/m], 10=0o, 20=-250o, 30=-180o. 
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Figure 10: (color online) The influence of the stiffness coefficient kx on the type of 
synchronization of 3 pendula shown as the average values of the sums of pendula's 
displacements  <2+1> and <3+1> versus kx: (a) 10=0o, 20=-135o, 30=-338o; (b) 10=0o, 
20=-135o, 30=-180o; (c) 10=0o, 20=-135o, 30=-80o; (d) 10=0o, 20=-135o, 30=-40o. 
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Figure 11: (color online) Dependence of the type of synchronization on the stiffness ratio kx 
and initial conditions: (a) type of synchronization versus kx and 30: 10=0o, 20=-135o; A-A 
cross-section of map (c); (b) the enlargement of map (a) for small values of kx, B-B cross-
section map (d); (c) the type of synchronization for different initial conditions 20 and 30; 
10=0o, kx=3000 [N/m], C-C cross-section map (a); (d) the type of synchronization as function 
20 and 30; 10=0o, kx = 325[N/m], D-D cross-section map (b). 
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Figure 12: Tree-synchronization (M) and antiphase-synchronization (A) of six pendula 
rotating in horizontal plane (lack of  gravity: g=0); (a) pendula's displacements during the 
tree-synchronization, kx=200.0[N/m], 10=0.0o, 20=-5.0o, 30=-10.0o, 40=-15.0o, 50=-20.0o, 
60=-25.0o, (b) pendula's displacements during the cluster-antiphase-synchronization, 
kx=2000.0[N/m], 10=0.0o, 20=-50.0o, 30=-100.0o, 40=-150.0o, 50=-200.0o, 60=-250.0o. 
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Figure 13: Different types of synchronization for the system with six pendulums in 
gravitational field (g=9.81[m/s2]); (a) pendula's displacements during the tree-
synchronization, kx=200.0[N/m], 10=0.0o, 20=-5.0o, 30=-10.0o, 40=-15.0o, 50=-20.0o, 
60=-25.0o, (b) pendula's displacements during the cluster-antiphase-synchronization, 
kx=2000.0[N/m], 10=0.0o, 20=-50.0o, 30=-100.0o, 40=-150.0o, 50=-200.0o, 60=-250.0o, 
(c) pendula's displacements during the cluster-left-synchronization, kx=3000.0[N/m], 
10=0.0o, 20=-50.0o, 30=-100.0o, 40=-150.0o, 50=-200.0o, 60=-250.0o, (d) pendula's 
displacements during the yankee-synchronization, kx=3000.0[N/m], 10=0.0o, 20=-80.0o, 
30=-85.0o, 40=-90.0o, 50=-270.0o, 60=-275.0o. 
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n Type of synchronization and conditions for its occurrence 
2 Mirror synchronization- Figure 2(b) (g=0.0) and Figure 5(b) (g=9.81[m/s2]): 

),sin(,sin 21 tttt    1+2=0. 
2 Antiphase synchronization- Figure 2(d) (g=0.0) and Figure 5(d) (g=9.81[m/s2]): 

),180sin(180,sin oo
21  tttt  1+2=180o+2sinωt. 

2 3Q synchronization- Figure 6(a) – exists only in the case when pendula rotate in the 
vertical plane: 

,sin1 tt   ),sin( 332 QQ tt  

),cos(sin)sin()cos1( 33321 tt QQQ    

3Q ϵ [-270o,-180o] (exact value depends on the value of kx). 
2 1Q synchronization- Figure 6(a) – exists only in the case when pendula rotate in the 

vertical plane. 
)sin(,sin 1121 QQ tttt   , 

),cos(sin)sin()cos1( 11121 tt QQQ    

1Q ϵ [-180o,-90o] (exact value depends on the value of kx). 
3 Tree synchronization – Figure 4(a) (g=0.0) and Figure 9(a) (g=9.81[m/s2]). 
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3 Cluster-antiphase synchronization – Figure 4(b) (g=0.0) and Figure 9(b) (g=9.81[m/s2]). 
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For g=0 and =0 the angle CA is equal to 180o and for g=9.81[m/s2] the angle CA is in 
the range -180o<CA<-90o depending on the value of kx. 

3 Cluster right synchronization – Figure 9(d) – exists only in the case when pendula rotate in 
the vertical plane. 
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where the angle CR is close to CR=-270o (the exact value depends on kx). 
3 Cluster left synchronization 

The same conditions as for cluster right synchronization. Replace the angle CR by the 
angle CL which is close to CL=-90o (the exact value depends on kx). 

3 Yankee 32 synchronization – Figure 9(c) 
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where the angle Y2 is Y2=-90o, and the angle Y3 is close Y3=-270o (the exact values 
depend on kx).  

3 Yankee 23 synchronization 
The same conditions as for the Yankee Y32 synchronization but pendula 2 and 3 are 
changing positions between themselves. 

 
Table 1. Types of synchronization of n=2,3 pendula and the conditions for their occurrence. 
The harmonic component sinωt describes the influence of the gravity of the pendula’s 
rotation (when pendula rotate in horizontal plane =0). 
 


