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We show that a ring of unidirectionally delay-coupled spiking neurons may possess a multitude of

stable spiking patterns and provide a constructive algorithm for generating a desired spiking

pattern. More specifically, for a given time-periodic pattern, in which each neuron fires once within

the pattern period at a predefined time moment, we provide the coupling delays and/or coupling

strengths leading to this particular pattern. The considered homogeneous networks demonstrate a

great multistability of various travelling time- and space-periodic waves which can propagate either

along the direction of coupling or in opposite direction. Such a multistability significantly enhances

the variability of possible spatio-temporal patterns and potentially increases the coding capability

of oscillatory neuronal loops. We illustrate our results using FitzHugh-Nagumo neurons interacting

via excitatory chemical synapses as well as limit-cycle oscillators. VC 2011 American Institute of
Physics. [doi:10.1063/1.3665200]

Feed-forward loops of coupled neurons are generic com-

ponents of nervous systems. Describing the dynamics in

such loops, especially, the emergence of stable spiking

patterns is crucial for understanding neuronal informa-

tion processing and storage. It has been shown that uni-

directionally coupled loops of neurons may have amazing

dynamical properties. For instance, stable travelling

waves may emerge that travel not only in the direction of

the coupling but also in opposite direction. In this paper,

we present a concept that goes beyond the phenomenon

of travelling waves. In fact, we show that a great variety

of complex time-periodic spiking patterns, in which each

neuron fires once within the pattern period, can be gener-

ated by a feed-forward loop. Moreover, we provide a rec-

ipe that enables to select the pattern of coupling delays

and/or coupling strengths leading to a desired spiking

pattern. Since the nervous system is able to tune both syn-

aptic weights and communication delays, it is able to gen-

erate, store, and retrieve a multitude of stable spiking

patterns in such a generic neuronal module. Accordingly,

this may contribute to the striking coding capability of

nervous systems.

I. INTRODUCTION

Delayed interactions can cause time-shifts between sig-

nals. This has been shown experimentally for two lasers

coupled with a time delay.1 However, in-phase synchroniza-

tion is still possible in many delay-coupled networks. In par-

ticular, for in-phase synchronization observed for distant

intra-cortical neuronal populations, a network motif has been

suggested, where a neuronal population in the thalamus can

serve as a mediator.2 Besides in-phase synchronization, the

emergence of more complicated spatio-temporal structures

and its control in coupled systems became a topic of increas-

ing interest.3,4 Spatio-temporal patterns of this kind are par-

ticularly important in the framework of the temporal coding

hypothesis, where the information of a neural spike train

generated by a single neuron or by a neural population is

hypothesized to be carried by the timing of the action poten-

tials.5,6 Hence, the variety of spatio-temporal firing patterns

appearing in neuronal ensembles7–9 play an important role

for neural coding.

The modulation of signal propagation delays, coupling

topology, and synaptic weights within and between neural

clusters can affect the formation of such patterns.6,10,11 In

the brain, the synaptic weights can permanently be adjusted

due to the spike timing-dependent plasticity, for review see

Ref. 12. Propagation delays also seem to be well-tuned in the

brain13 and can be adapted either by synaptic selection out of

a spectrum of many possible delay lines14,15 or directly by

changing length and thickness of dendrites and axons, the

extent of myelination of axons, variation of synaptic laten-

cies, etc.16–18 Accordingly, pathological alterations of the

signal conductance can severely impair neural information

processing as, for example, in the case of axon demyelin-

ation in multiple sclerosis.19

In this paper, we show how a variety of spiking patterns

may stably appear in an oscillatory neuronal loop by appro-

priate adjustment of communication delays and synaptic

weights. In particular, for any time-periodic spiking pattern,

in which each neuron spikes once per the pattern period at an

arbitrary given position within the period, we explicitly pro-

vide the values of the communication delays leading to such

a pattern. We show that not only the inhomogeneity of the

communication delays, but also the inhomogeneity of the
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synaptic weights as well as their combination can create a

great variability of spiking patterns. Moreover, even assum-

ing completely homogeneous couplings and delays, various

spiking patterns can be created by altering properties of indi-

vidual neurons. Our results indicate that such a simple uni-

directional ring coupling topology already possesses striking

coding capabilities taking into account the inhomogeneities,

which may naturally occur in neural systems. Some of the

above results have briefly been reported for ensembles of

limit-cycle oscillators and Hodgkin-Huxley spiking neurons

in our short communication.20 In this paper, we further

extend our investigations of the emergence of spatio-

temporal patterns, also, for another neuronal model.

As mentioned above, we consider unidirectionally

coupled loops which are generic components in the nervous

system, where many neural circuits are organized in feed-

forward loops21,22 as intensively studied, e.g., in the context

of pathological neural dynamics23,24 and deep brain stimula-

tion.25 Such networks are involved in the generation of stable

periodic motor commands by central pattern generators of

the nervous system controlling rhythmic locomotion in ani-

mals.26 In studies on the propagation of neural activity along

feed-forward chains,27 traveling waves turned out to be typi-

cal solutions.28 Many theoretical studies are devoted to non-

linear dynamics in rings of coupled systems.29–43 In

particular, the existence and stability of phase-locked pat-

terns and amplitude death states;37 periodic39,41,42,44,45 and

chaotic travelling waves;32,46,47 transient oscillations;48,49

bifurcating periodic orbits44,45 have been reported. It was

shown in Refs. 39, 43, 50 that the transition from stationary

to oscillatory behavior in such systems is mediated by a

bifurcation scenario, which includes the appearance of multi-

ple periodic orbits with different frequencies and spatial

organization.

We note that an internal or external noise, which is

inherently present in real neural networks, can also improve

the timing precision of the neuronal spiking, as shown by

Frank Moss and co-workers51,52 for the case of deterministi-

cally sub-threshold stimuli in an array of noisy Hodgkin-

Huxley neurons or in-phase synchronized states of locally

coupled nonidentical units of the FitzHugh-Nagumo type

driven by additive noise. These results further support the

temporal coding hypothesis and underline the importance of

studying the emergence mechanisms of complex spatio-

temporal firing patterns in neuronal networks.

The structure of the paper is as follows: In Sec. II, we

introduce the models of ring-coupled limit cycle (LC) oscil-

lators and FitzHugh-Nagumo (FHN) neurons interacting via

excitatory chemical synapses. In Sec. III, we review and

extend our previous results on the homogeneous rings of uni-

directionally coupled systems. In particular, we describe

properties of coexistent multiple travelling waves, e.g., their

number, stability, spatial and temporal frequencies, depend-

encies on the delays, and number of oscillators in the ring.

We also show the existence of stable backward travelling

waves, which are periodic in time and space and propagate

in the direction opposite to the direction of coupling. Further,

in Sec. IV, we consider the inhomogeneous rings and dem-

onstrate how various stable spiking patterns can be produced

in such a system. In particular, we consider the cases of inho-

mogeneous communication delays in Sec. IV A, inhomoge-

neous synaptic weights in Sec. IV B, their combination in

Sec. IV C, and essentially non-identical internal parameters

of the oscillators for homogeneous couplings and delays in

Sec. IV E. Finally, we conclude in Sec. V.

II. THE MODELS

We illustrate our results using two models. The first

model is the ring of coupled LC oscillators53 of the form

_zjðtÞ ¼ ðaþ ibÞzjðtÞ � zjðtÞ zjðtÞ
�� ��2þKjzjþ1ðt� sjÞ; (1)

where zj, j¼ 1,…,N are complex variables for individual

oscillators, a and b are real parameters, sj> 0 are time delays

of the coupling (see Fig. 1), and Kj are coupling weights.

The ring structure implies zNþ 1: z1. System (1) allows to

investigate many properties of periodic solutions analyti-

cally, due to the S1-symmetry with respect to the phase

change zj ! zje
ic. Because of this symmetry, time-periodic

solutions bifurcating generically from the homogeneous state

z1 ¼ � � � ¼ zN have the simple explicit form zj ¼ qje
ixtþiuj

with some constant amplitudes qj, frequency x, and phase

shifts uj. We will use this property in order to obtain analyti-

cal characteristics of periodic solutions.

Another, more realistic model is given by a ring of

delay-coupled FHN oscillators54,55 interacting via excitatory

chemical synapses

_vj ¼ vj � v3
j =3� wj þ Ij þ KjðV � vjÞsjþ1ðt� sjÞ;

_wj ¼ 0:08ðvj þ 0:7� 0:8wjÞ;
_sj ¼ 0:5ð1� sjÞ=ð1þ expð�5ðvj � 1ÞÞÞ � 0:6sj;

j ¼ 1; 2;…;N:

(2)

Here, variable vj models the membrane potential of a single

cell, and Ij is a constant current controlling the spiking dy-

namics of a neuron. In what follows, we consider Ij being

randomly Gaussian distributed around the mean value
�I ¼ 0:4 with standard deviation r¼ 0.002. For such values

of Ij neurons (2) demonstrate an intrinsically spiking dynam-

ics with spiking frequencies fj (number of spikes per second)

of individual neurons being distributed around the mean

frequency �f � 23:5 Hz with standard deviation rf� 0.05.

FIG. 1. Coupling scheme and illustration of the spiking fronts, which are

propagating along (left figure) and opposite (right figure) to the coupling

direction.
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The synaptic coupling between the neurons in ensemble (2)

is realized via a post-synaptic potential sj triggered by spikes

of neuron j.56,57 It is modeled in the standard way by an addi-

tional equation for sj(t).
58,59 Parameters Kj define the cou-

pling strength, sj are the time delays in coupling, and V is the

reversal potential taken as V¼ 2 for excitatory coupling. As

for the ensemble of LC oscillators (1), we assume that the

neurons are unidirectionally coupled in a ring such that

sNþ 1: s1.

The above introduced systems can be written in the gen-

eral form

_xjðtÞ ¼ f jðxjðtÞ; xjþ1ðt� sjÞÞ (3)

with some functions fj. When the specific details of the sys-

tems do not play important role, we will use the representa-

tion (3).

III. TRAVELLING FRONTS IN HOMOGENEOUSLY
COUPLED SYSTEMS

In this section, we assume that the system is homogene-

ous, i.e., the coupling strengths Kj¼K are identical as well

as the interaction delays sj¼ s. Although the individual dy-

namics of oscillators (1) and (2) is described by completely

different systems, the topology of the coupling (3) implies

that both systems possess travelling wave solutions.60,61 For

coupled LC oscillators, it means that the maxima of the solu-

tions are propagating along the chain periodically with a con-

stant phase-shift between any two neighboring oscillators. In

the case of neural systems, this leads to the appearance of fir-

ing fronts, which are travelling along the ring. In spite of the

unidirectional coupling, the fronts can stably propagate in

both directions: along the coupling as well as in the direction

opposite to the coupling.

A. Properties of travelling waves in LC coupled
systems

Some of the observed stable travelling waves for system

(1) are illustrated in Fig. 2. Figure 2a shows a wave with two

maxima, which is propagating along the network in the

direction opposite to the coupling, i.e., towards the increas-

ing oscillator index j. A similar pattern with one maximum

in space is shown in Fig. 2(b), which is obtained in ensemble

(1) for the same parameter values, but for different initial

condition. Figure 2(c) shows completely synchronized oscil-

lations. Stable patterns, which propagate in the direction

along the coupling are shown in Figs. 2(d) and 2(e). All of

the illustrated patterns are dynamically stable for the selected

parameter values, and, hence, small perturbations as well as

small parameter changes do not destroy them.

Periodic travelling waves for ensemble (1) have the fol-

lowing form (for more details, see Ref. 43)

zjðtÞ ¼ qeixtþiulj; where ul ¼
2p
N

l: (4)

Here, q and x are the amplitude and the oscillation frequency,

respectively. ul corresponds to a spatial mode with any possi-

ble integer l ranging from �N/2 to N/2. Note that ul equals to

the phase shift between the neighboring oscillators. The fre-

quency x satisfies the following transcendental equation

x ¼ bþ K sin ul � xsð Þ: (5)

For the given spatial mode ul and frequency x from Eq. (5),

the amplitude q is given by

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ K cos ul � xsð Þ

p
:

From Eq. (5), it follows that for any given spatial mode ul,

multiple frequencies x¼xlk may appear since Eq. (5)

admits multiple solutions (here, k¼ 1,2,…,M(s, l) is the

index of different solutions of Eq. (5) for given l and s),

especially for large s. More specifically, for small s, a unique

frequency xl appears for each spatial mode [Figs. 4(a),

4(d)–4(f)]. With increasing s, more and more frequencies

appear for each ul [Figs. 4(b), 4(c)]. The number M(s, l) of

different possible frequencies xlk grows linearly with s.62

Such a multistability is typical for systems with large time

delay, see, e.g., Refs. 63–65. Figure 3 illustrates this multi-

stability on the example of the in-phase synchronous mode

u0¼ 0 by showing spatio-temporal plots of the solutions

zjðtÞ ¼ qeix0kt with k¼ 1, 2, 3.

Figure 4 shows possible oscillation frequencies x versus

spatial modes ul. More exactly, the relative number of firing

fronts (or maxima of the trajectories <ðzjðtÞÞ simultaneously

travelling along the ring) with respect to the number of oscil-

lators NFF¼ l/N is plotted along the horizontal axis, which is

proportional to ul, namely NFF¼ul/2p. In Figs. 4(a)–4(c),

the effect of the time delay is illustrated: with increasing

time delay s, the function x becomes multivalued and the

FIG. 2. (Color online) Space-time plots of stable periodic travelling waves

in the system of N¼ 200 unidirectionally coupled LC oscillators (1) for pa-

rameters b¼ 2, a¼ 1, s¼ 10, and K¼ 1. The oscillator index j is shown

along the horizontal axes and time t is plotted along the vertical axes. Colors

indicate the magnitude of the real part of the trajectory zj(t) ranging from its

maximal value [red] to its minimal value [blue]. In plots (a) and (b), the

waves are moving to the right, i.e., against the coupling direction. In the

middle plot (c), a completely synchronized regime is illustrated. Plots (d)

and (e) depict the travelling waves with (d) one and (e) two maxima which

are propagating to the right, i.e., along the direction of the coupling.
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multistability increases. Brighter (green online) parts of the

curves correspond to stable travelling waves and darker (red

online) to unstable. We see that the number of stable and unsta-

ble waves are roughly equal for large delays. The impact of the

bifurcation parameter a is illustrated in Figs. 4(d)–4(f). The

travelling waves start to appear at a¼�jKj, and for

�jKj< a< 0, the admissible range of oscillation frequencies is

jx� bj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � a2
p

; (6)

while for a> 0 it reaches its maximum jx� bj � jKj. For

small s and a, the range of admissible spatial modes l can

also be bounded, see Fig. 4(d). Indeed, as follows from

Eqs. (5) and (6), the bounds are

ul � bsj j � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � a2
p

þ arccos � a
K

� �
; (7)

for�K< a<K and small s. With increasing s or a, the

range of admissible spatial modes reaches the maximum

uj 2 ½�p; p� according to Eq. (7).

The dependence of the round-trip time of the waves

travelling along the ring is illustrated in Figs. 5(a)–5(c). One

can observe that the round-trip time continuously depends on

NFF. Zero round-trip time corresponds to the homogeneous

(completely synchronous) state.

Typical dependence of the intervals DTs between the

spikes (maximum values of the trajectories xjðtÞ ¼ <ðzjðtÞÞÞ of

two neighboring oscillators zj(t) and zjþ 1(t) on delay time s is

shown in Fig. 5(d). This dependence is shown for some travel-

ling wave with a fixed spatial wavenumber l¼ l*=0. Although

the dependence DTs(s) itself is continuous along the branch, the

branch can clearly be decomposed into sub-branches corre-

sponding to different resonances. Each such sub-branch consists

of one stable (bright part, green online) and one unstable (dark,

red online) part. The stable parts can be well approximated by a

linear function of delay indicating the “resonance” character of

DTs(s). An interesting property of these sub-branches is that for

any travelling wave at time delay s on one sub-branch, there

exists the same travelling wave on all other sub-branches for

time delays

FIG. 4. (Color online) Coexistence of numerous peri-

odic travelling waves and their stability for system (1).

Spatial modes are shown along the horizontal axis as

NFF¼ l/N, where NFF measures the relative number of

the firing fronts travelling along the ring. Oscillation

frequencies x are shown along the vertical axis. The

left column illustrates the influence of the delay, where

the delay increases from top to bottom. The right col-

umn shows the influence of the parameter a. Stable

travelling waves are depicted in light gray (green

online) and unstable waves in dark gray (red online).

Parameters are indicated in the plots.

FIG. 3. (Color online) Multistability of the in-phase synchronous regimes

with u0¼ 0 due to the delay in the coupling. Color depicts the magnitude of

the trajectories <ðzjðtÞÞ as in Fig. 2. The index k enumerates different oscil-

lation frequencies x0k, which are the solutions of Eq. (5). Similar multi-

stability takes place for other spatial modes ul, l¼ 1,…,N. Parameters

s¼ 10, a¼� 0.5, b¼ 1, N¼ 200, and K¼ 1.
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sm ¼ sþ m2p=xðsÞ: (8)

Here, x(s) is the frequency of the travelling wave and m is an

integer number. Thus, the set of travelling waves on one

sub-branch can be mapped by the mapping (8) to any other

sub-branch with an appropriate m. This property follows

from the fact, that any periodic solution of a system (3) with

homogeneous delays sj¼ s with frequency x is the solution of

the same system with time-delay sm as well (for more details

for general delay differential equations, see Ref. 62). Figure

5(d) also illustrates how the coexistence of multiple travelling

waves with the same wavenumber increases as the time delay

grows.

B. Perturbations of backward propagating fronts

In the previous sections, we have seen that the unidirec-

tional rings of coupled systems possess periodic regimes of

oscillations, in which the maxima of the periodic spikes move

against the coupling direction. Such regimes do not contradict

to the fact that the information flow in the system is propagat-

ing only along the coupling direction. Indeed, any local per-

turbation in the system will propagate along the coupling

direction as illustrated in Fig. 6. We perturb there at time

t¼ 0, a small group of oscillators close to j¼ 90. Afterwards,

the perturbation is spreading along the coupling direction

(here, to the left) and opposite to the spiking front direction.

C. Travelling waves in coupled FitzHugh-Nagumo
neurons

The network of FHN neurons (2) unidirectionally

coupled in a ring via excitatory chemical synapses also dem-

onstrates a great multistability of travelling waves. Depend-

ing on the initial conditions, the neurons can synchronize

and fire either simultaneously (in-phase synchronization) or

with the time shift tj� tjþ 1� Tl/N between the neighboring

neurons, where T is the period of oscillations. In the latter

FIG. 5. (Color online) (a)-(c) Round-trip time TRT of

the waves travelling along the ring versus the spatial

number NFF for the LC ensemble (1). Stable waves are

shown in light gray (green online) and unstable waves

in dark gray (red online). (d) Inter-spike intervals DTs

between two neighboring oscillators versus delay s for

a travelling wave with wavenumber l= 0. Parameters

are indicated in the plots.

FIG. 6. (Color online) A stable backward propagating wave is locally per-

turbed. The perturbation is propagating along the coupling direction (to the

left) and opposite to the propagation of maxima. (a) Oscillators 80–83 are

perturbed. (b) Oscillators 80–86 are perturbed. The amplitude of the travel-

ling waves is� 1.4, while the perturbation amplitude is �zj ¼ 2:0þ i2:0.

Other parameters: N¼ 100, s¼ 10, a¼ 1.0, and b¼ 0.
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case, l firing fronts propagate along the network either in the

direction of coupling or in opposite direction. Although an

isolated FHN neuron exhibits a mono-stable periodic firing

at the frequency f� 23.5 Hz for the considered parameters,

the ring of such neurons (2) gets synchronized and fires at

multiple frequencies ranging from approximately 10 Hz to

80 Hz and in numerous co-existing travelling waves [Fig. 7].

Such a multistability of travelling waves is already well pro-

nounced for zero delay in the coupling [Fig. 7, blue dia-

monds], and it is significantly enhanced if a delay sj in

coupling is introduced [Fig. 7, red circles for sj¼ 5 ms and

green squares for sj¼ 20 ms]. Interestingly, as in the case of

LC oscillators, in the FHN ensemble the delay does not

change the frequency interval of possible synchronized dy-

namics. Even though the number of coexisting stable travel-

ling waves increases for large delay, all of them fit into the

same frequency range from 10 Hz to 80 Hz filling this inter-

val more densely when the delay increases.

IV. VARIABILITY OF SPIKE PATTERNS
IN NON-HOMOGENEOUS RINGS

In the case where the ring of coupled systems is not ho-

mogeneous, much more complicated structures are possible.

As a result, the spike-encoding capability of such system

increases drastically. In this section, we show in this section,

that practically any stable spiking pattern can be created by

an appropriate variation of the system’s inhomogeneity. We

consider the following types of inhomogeneities: variable

delay times, variable coupling weights, and variable parame-

ters of individual oscillators.

A. Firing patterns induced by inhomogeneous
coupling delays

Varying time delays in coupling is possibly the most

universal and simple way of creating different patterns. Let a

general homogeneous network (3) with identical delays

sj¼ s exhibit a stable periodic dynamics where neuron j fires

at time moment tj within one period. We refer to such a state

as a reference pattern. It might for instance be an in-phase

synchronization with t1 ¼ t2 ¼ � � � ¼ tn or any kind of stable

travelling waves described in the previous section. Given a

sequence of real numbers g1,g2,…, gN, the change of varia-

bles yj(t)¼ xj(t� gj) transforms this system to a system of

the same form (3) but with inhomogeneous delays

sj ¼ s� gjþ1 þ gj: (9)

In the new system, neurons fire at times

�tj ¼ tj þ gj; j ¼ 1;…;N: (10)

Thus, by choosing the delays appropriately, one can generate

an almost arbitrary stable spiking pattern (10). Relation (9)

provides an explicit expression for coupling delays, given

any predefined sequence fgjgN
j¼1. Note that for the in-phase

reference pattern t1 ¼ t2 ¼ � � � ¼ tN , the new spiking pattern

f�tjgN
j¼1 coincides with the sequence fgjgN

j¼1, since tj can be

set to zero by a common time shift. The requirement for sj to

be positive leads to the following limitation on the created

pattern: the new inter-spike interval between two neighbor-

ing neurons �tjþ1 � �tj cannot exceed the value (tjþ 1� tj)þ s.

This fact follows from the positiveness of sj and the follow-

ing estimate

�tjþ1 � �tj ¼ tjþ1 � tj þ s� sj < tjþ1 � tj þ s:

In particular, if the reference pattern is the in-phase

synchronized state, then �tjþ1 � �tj < s. Therefore, the cou-

pling delay s plays an important role by opening up the pos-

sibility for the emergence of nontrivial patterns. The larger

the delay, the greater the possible spread of the firing times

in the pattern.

The above arguments are actually independent of the

particular form of the coupled individual systems and under-

lying dynamics. Moreover, similar arguments can be applied

to an arbitrary coupling topology

_xjðtÞ ¼ f jðxjðtÞÞ þ gjðx1ðt� sÞ;…; xNðt� sÞÞ: (11)

In this case, the above change of variables yj(t)¼ xj(t� gj)

leads to the system with inhomogeneous delays

_yjðtÞ ¼ f jðyjðtÞÞ þ gjðy1ðt� s1jÞ;…; yNðt� sNjÞÞ; (12)

where

sjp ¼ s� gp þ gj

are the coupling delays from oscillator p to oscillator j.
Indeed, by differentiating yj(t), we obtain

_yjðtÞ ¼ _xjðt� gjÞ ¼ f jðxjðt� gjÞÞ
þ gjðx1ðt� gj � sÞ;…; xNðt� gj � sÞÞ:

Taking now into account that xj(t� gj)¼ yj(t) and

xp(t� gj� s)¼ xp(t� gp� (s� gpþ gj))¼ yp(t� spj), we ob-

tain Eq. (12). The firing times of Eqs. (11) and (12) are

related again by the same simple expression (10). From this

point of view, the ring of unidirectionally coupled systems

plays the role of a minimal model with the minimal possible

number of links N.

The above delay-induced patterns can be applied to any

stable dynamics of FHN neurons (2). We illustrate this by a

random pattern in Fig. 8. For this, we consider the FHN sys-

tem with identical delays sj¼ 20 ms, which possesses a sta-

ble in-phase synchronized firing pattern [Fig. 8(a), green

FIG. 7. (Color online) Multistability of travelling waves in the ring of

N¼ 100 FHN neurons (2). The spiking frequency of the neurons exhibiting

a stable travelling wave with l firing fronts propagating either in the direc-

tion of coupling (l> 0) or in the opposite direction (l< 0) is depicted versus

l for delays sj¼ 0 ms (blue diamonds), 5 ms (red circles), and 20 ms (green

squares). The coupling weights Kj¼ 2.
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empty circles]. Then, we randomly choose a target firing pat-

tern fgjgN
j¼1, where the time shifts gj are uniformly randomly

distributed in the interval [�20, 20] ms [Fig. 8(a), red filled

diamonds], and compute the necessary coupling delays

fsjgN
j¼1 by Eq. (9). The corresponding distribution of the

delays is shown in Fig. 8(b). After adjusting of the delay

times to the newly computed values, the system shows a sta-

ble pattern [Fig. 8(a), blue empty diamonds], which periodi-

cally repeats the predicted targeted pattern {gj}.

Note that the initial conditions leading to this pattern

should be adjusted as well, since the system still possesses a

high level of multistability [Fig. 7] and different initial con-

ditions may lead to different patterns. For example, for the

same delays as in Fig. 8(b) and for initial conditions resulting

in the travelling waves with l¼61 firing fronts for identical

delays, we may obtain patterns [Figs. 8(c), 8(d), blue empty

diamonds] which look somewhat different to that shown

in Fig. 8(a). Nevertheless, we get a perfect overlap with

the predefined pattern {gj} if it is adjusted by the correspond-

ing time shifts tj attributed to the given travelling wave,

gj�Tlj/N [Figs. 8(c), 8(d), red filled diamonds]. This sup-

ports the simple relation (10) between the firing times of the

reference pattern for the homogeneous ensemble and the

firing patterns induced by distributed delays.

B. Firing patterns induced by inhomogeneous
synaptic weights

We show that various firing patterns can equivalently be

induced in neural networks by varying synaptic weights. To

illustrate this, we first consider the LC oscillators (1) with

homogeneous delays sj¼ s.

Again, using the rotation symmetry of the system, one

can look for periodic solutions of the form zjðtÞ ¼ qje
ixtþiwj

with constant amplitudes qj and phase shifts wj. Substituting

this ansatz into Eq. (1), we obtain the expressions for cou-

pling weights Kj for a given phase pattern fwjg
N
j¼1

Kj ¼
qj

qjþ1

x� b
sinðwjþ1 � wj � xsÞ ; (13)

where

qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ðx� bÞ cotðwjþ1 � wj � xsÞ

q
(14)

are the corresponding amplitudes. Hence, for a given phase

pattern fwjg
N
j¼1 and frequency x, one can uniquely find cou-

pling weights fKjgN
j¼1 from Eqs. (13)–(14) leading to such a

spatio-temporal pattern in ensemble (1). Since the stability of

the predicted pattern is not known a priori, it is reasonable to

choose x as the frequency of a stable synchronized pattern in a

corresponding homogeneous system with identical couplings

Kj¼K. In this case, x�b¼K sin(ul�xs) (see Eq. (5)) and

the coupling weights from Eq. (13) will lead to a stable pattern,

at least for small modulations of the synchronous state.

We illustrate this approach on the ring of 100 LC oscil-

lators (1) with sj¼ 5 ms and Kj¼ 2. For these parameter val-

ues, there exists a stable in-phase synchronized pattern with

frequency x� 0.09 s�1 (the time units in Eq. (1) are consid-

ered as milliseconds). We consider this state as a reference

pattern [Fig. 9(a), green circles]. Then, we generate a random

phase pattern {wj} [Fig. 9(a), red filled diamonds] and calcu-

late the corresponding coupling weights Kj by Eqs. (13)–(14)

[Fig. 9(b)]. The results of the numerical simulations of the

LC ensemble (1) with the above inhomogeneous coupling

weights are shown in Fig. 9(a) [blue empty diamonds],

which perfectly agree with the theoretical prediction [Fig.

9(a), red filled diamonds].

In such a way, a broad spectrum of coupling-induced

patterns can be generated in the ring of LC oscillators (1).

We consider another, zig-zag pattern shown in Fig. 10(a)

[red filled diamonds] and calculate the corresponding cou-

pling weights using Eqs. (13)–(14) [Fig. 10(b)]. Such a dis-

tribution of the coupling weights induces a zig-zag pattern in

FIG. 8. (Color) Delay-induced firing patterns in the ensemble of N¼ 100

FHN neurons (2). (a), (c), (d) Raster plots of the neuronal firing induced by

inhomogeneous delays sj depicted in plot (b) for identical coupling weights

Kj¼ 2 and for different reference patterns depicted by green empty circles:

(a) in-phase reference pattern, (c) and (d) travelling wave reference patterns

with l¼ 1 and l¼�1 firing fronts, respectively, obtained for identical delays

sj¼ 20 ms and coupling Kj¼ 2. Blue empty diamonds indicate spike onsets

obtained by numerical simulation of ensemble (2), and red filled diamonds

depict the theoretically predicted pattern gj adjusted to the firing times of the

corresponding reference pattern, gj�Tlj/N. To observe the above complex

patterns the reference patterns were numerically continued by slowly

approaching the predicted delays.

FIG. 9. (Color) Coupling-induced random pattern in a ring of N¼ 100 LC

oscillators (1) for identical delays sj¼ 5 ms. (a) Raster plot of the crossing

of the Poincare section {x¼ 0, y� 0} by the oscillators’ trajectories

{zj(t)¼ xj(t)þ iyj(t)} [blue empty diamonds]. The predefined pattern [red

filled diamonds] is obtained by a uniform random distribution of the firing

times {gj} in the interval [�60 ms, 60 ms] and smoothing them by a running

average over 25 oscillators. The corresponding phase pattern {wj} is then

calculated as wj¼�2pgj/T, where T is the period of the reference in-phase

synchronized pattern [green empty circles] of the homogeneous LC ensem-

ble (1) for Kj¼ 2 and sj¼ 5 ms. (b) The corresponding distribution of the

coupling weights Cj obtained for the above predefined phase pattern {wj}

from Eqs. (13)–(14). Parameters a¼ 1 and bj are Gaussian distributed

around b¼ 1 with standard deviation 0.01.
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the LC ensemble, and, as before, the results of numerical

simulations [Fig. 10(a), blue empty diamonds] perfectly

agree with the theory [Fig. 10(a), red filled diamonds]. As

follows from Eqs. (13)–(14), the inhomogeneous coupling

influences the amplitudes qj of the oscillators. Indeed, the

oscillators’ amplitudes of the zig-zag pattern are significantly

changed [Figs. 10(c) and 10(d), blue empty diamonds] and

strongly deviate from the uniform amplitudes of the in-phase

synchronized reference pattern [Fig. 10(d), green circles].

Again, the theoretical prediction for the amplitudes [Fig.

10(d), red filled diamonds] nicely fits to the results of the nu-

merical simulations.

In fact, formula (13) obtained for the LC oscillators (1)

can effectively be used to generate coupling-induced patterns

also in neuronal ensembles. We illustrate this on the FHN

neurons (2). If the above coupling parameters Kj [Fig. 10(b)]

are used for the excitatory coupled FHN neurons (2) as

synaptic weights, the neuronal ensemble demonstrates quali-

tatively the same zig-zag pattern [Fig. 11(a), blue empty dia-

monds]. The results of numerical simulations can well be

overlapped with the theoretically predefined pattern after its

rescaling by some constant factor tj! const � tj [Fig. 11(a),

red filled diamonds]. This indicates that the expression (13)

can empirically be used to generate coupling-induced pat-

terns in neuronal ensembles. We note that the spike ampli-

tudes are practically not affected by the inhomogeneous

synaptic weights [Fig. 11(b)], which is in contrast to the LC

oscillators [Fig. 10(c)], and only the resting states of the

spiking dynamics are slightly influenced. Therefore, for

the neuronal ensembles one may also utilize Eq. (13) where

the amplitudes are ignored, i.e., letting qj: 1.

C. Cooperative effect of inhomogeneous delays
and synaptic weights

The communication delays and synaptic weights, if

adjusted simultaneously, may also have cooperative effects

on the spatio-temporal firing patterns. We illustrate this phe-

nomenon on a wave-like pattern [Fig. 12(a), blue empty dia-

monds] induced in the FHN neuronal ensemble (2) from the

in-phase synchronized reference pattern [Fig. 12(a), green

circles] by inhomogeneous synaptic weights Kj [Fig. 12(b)].

The latter are calculated by Eqs. (13)–(14) from the prede-

fined phase pattern [Fig. 12(a), red filled diamonds].

In Fig. 12(a), the reference in-phase synchronized pat-

tern is nearly completely overlapped by another in-phase

synchronized state [Fig. 12(a), black triangles] which is

obtained for FHN neurons when both synaptic weights

FIG. 10. (Color) (a) Coupling-induced zig-zag pattern in a ring of N¼ 100

LC oscillators (1) for identical delays sj¼ 5 ms. (a) Raster plot of the return

times of the oscillators to the Poincare section as in Fig. 9(a) with the same

meaning of the colors. (b) The corresponding distribution of the coupling

weights Kj. (c) Time courses of the trajectories xjðtÞ ¼ <ðzjðtÞÞ for oscilla-

tors j¼ 1, 25, and 50 as indicated in the legend. (d) Amplitudes qj¼ jzjj of

the oscillators corresponding to the patterns depicted in (a) with the same

meaning of the colors. The other parameters as in Fig. 9.

FIG 11. (Color) (a) Coupling-induced zig-zag firing pattern in the ensemble of

N¼ 100 FHN neurons (2) for identical delays sj¼ 5 ms and inhomogeneous syn-

aptic weights Kj from Fig. 10(b). (a) Raster plot of the neuronal firing where

numerically simulated zig-zag pattern [blue empty diamonds] are compared with

the theoretically predicted pattern scaled by a factor 2.9 [red filled diamonds] to

fit the numerical results. Green circles depict in-phase synchronized reference

pattern for identical Kj¼ 2 and sj¼ 5 ms. (b) Time courses of the membrane

potentials vj(t) for neurons j¼ 1, 25, and 50 as indicated in the legend.

FIG. 12. (Color) Cooperative effect of inhomogeneous delays and synaptic

weights on the spatio-temporal patterns in ensemble of N¼ 100 FHN neu-

rons (2). (a) Raster plot of the neuronal firing for in-phase synchronized ref-

erence patterns for identical delay sj¼ 5 ms and coupling Kj¼ 2 [green

circles]; wave-like pattern for inhomogeneous coupling Kj from plot (b) and

identical delays sj¼ 5 ms [blue empty diamonds]; in-phase synchronized

pattern for inhomogeneous coupling from plot (b) and delays from plot (c)

[black triangles]. The theoretically predicted wave-like pattern for inhomo-

geneous coupling from plot (b) and sj¼ 5 ms is scaled by a factor of 2.9 [red

filled diamonds] to fit the results of numerical simulations. (b) The corre-

sponding synaptic weights Kj and (c) communication delays sj.
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[Fig. 12(b)] and communication delays [Fig. 12(c)] are

appropriately adjusted simultaneously. Therefore, an in-

phase synchronization can for instance be obtained in either

homogeneous neuronal ensemble for identical delays and

synaptic weights [Fig. 12(a), green circles] or in a very inho-

mogeneous neuronal ensemble [Fig. 12(a), black triangles]

for broadly distributed communication delays [Fig. 12(c)]

and couplings [Fig. 12(b)]. The discussed cooperative effect

of the adjustable delays and coupling strengths can even fur-

ther increase the coding capability of the considered net-

works, where new patterns may be induced which are not

accessible if only communication delays or only synaptic

weights are varied.

D. Basins of attraction

Since the considered networks possess a great multi-

stability of travelling waves, it is important to understand

how accessible the delay- and coupling-induced patterns are.

To address this issue, we calculate the basins of attraction of

the corresponding complex spatio-temporal patterns. For

the ring of LC oscillators (1), we consider a class of initial

functions C(t), t 2 ½�s; 0�, s ¼ max
j

sj, which can be parame-

terized by two parameters: temporal period T and spatial

phase shift u. In such a way, for given T and u the initial

function attains the form C(t)¼ [C1(t), C2(t),…,CN(t)]T with

CjðtÞ ¼ cðtþ wj þ uj=NÞ; (15)

where the limit cycles c(t)¼ (cos(2pt/T), sin(2pt/T)) have a

unit amplitude and period T. The constant phase shifts wj

correspond to the investigated pattern and are considered as

wj¼ 0 for the homogeneous ensemble (in-phase synchron-

ized initial state), the predefined phase shifts {wj} from Eqs.

(13) and (14) for the coupling-induced patterns, and the cor-

responding phase shifts wj¼�2pgj/T for the delay-induced

patterns, see Sec. IV A.

The homogeneous LC ensemble (1) for the considered

parameters Kj¼ 2 and sj¼ 5 ms (the time units in Eq. (1) are

considered as milliseconds) has a stable in-phase synchron-

ized state with the temporal period T� 66.85 ms. We thus

investigate the ranges of the period T 2 ½40; 100�ms and the

phase shift u 2 ½�4p; 4p� for the initial functions, which

comprise the in-phase synchronized state (l¼ 0) and the trav-

elling waves with l¼61, 62 firing fronts. The basins of

attraction of the above travelling waves for the homogeneous

LC ensemble (1) are shaded in gray in Fig. 13(a) versus pa-

rameters (T, u). One can notice that, for the considered range

of parameters, there is a relatively weak dependence of the

basin boundaries on the period T, whereas the spatial phase

shift u of the initial function plays a significant role in the

selection of the desired travelling wave.

The basins of attraction of the delay-induced patterns

are the same as for the homogeneous networks. This follows

from the suggested change of the variables, see Sec. IV A,

where the stability of the patterns is not affected. We also

verified this for the inhomogeneous delays sj from Fig.

12(c). For the initial functions C(t) from the gray region in

Fig. 13(a) labeled “l¼ 0”, the inhomogeneous LC ensemble

(1) exhibits an S-shaped pattern inverted to that shown in

Fig. 12(a) [red filled diamonds]. For the initial functions

from other gray regions in Fig. 13(a), the skewed S-shaped

patterns are realized, which are aligned along the corre-

sponding travelling waves of the homogeneous LC ensemble

with l¼61, 62 firing fronts, respectively. Similarly as for

the delay-induced random patterns illustrated for the FHN

neurons in Figs. 8(c), 8(d), the skewed patterns can well be

overlapped with the predefined pattern {gj} if the latter is

adjusted to the firing times of the corresponding reference

pattern, gj� Tlj/N.

For the coupling-induced patterns of the inhomogeneous

LC ensemble (1) the basins of attraction also have the same

structure and nearly coincide with the basins of attraction for

the travelling waves of the homogeneous ensemble. This is

illustrated in Fig. 13(a) for the inhomogeneous coupling

weights Kj taken from Fig. 12(b). The basin boundaries in

this case are delineated by black solid curves. For the initial

functions from the region labeled “l¼ 0” the S-shaped pat-

tern [as in Fig. 12(a), red filled diamonds] is realized. For

other initial functions, the S-shaped patterns get aligned

along the corresponding reference patterns, i.e., travelling

waves for the homogeneous ensemble with the correspond-

ing number of the firing fronts l, see Figs. 13(b) and 13(c)

[blue empty diamonds] for l¼ 1 and l¼�1, respectively.

Note that the shape of the coexisting skewed S-shaped pat-

terns from Figs. 13(b) and 13(c) slightly deviates from that

of the tilted predefined pattern even if the latter is adjusted to

the firing times of the corresponding reference pattern, see

the difference between red and blue diamonds in Figs. 13(b)

and 13(c). This is in contrast to the delay-induced patterns

and predicted by Eqs. (13) and (14). The reason for this

FIG. 13. (Color online) (a) Basins of attraction of the spatio-temporal pat-

terns of the LC ensemble (1) for a two-parameter family of initial functions

(15) versus initial period T and phase shift u (see text for details). Gray

regions show the basins of attraction of the travelling waves indicated by

empty green circles with l¼ 0 (in-phase synchronization) and 61, 62 firing

fronts for the homogeneous ensemble with Kj¼ 2 and sj¼ 5 ms, and for

delay-induced patterns for nonidentical delays sj from Fig. 12(c). The black

solid curves depict basin boundaries for the coupling-induced S-shape pat-

terns [Fig. 12(a)] for nonidentcal coupling weights Kj from Fig. 12(b). Two

examples of the coupling-induced patterns realized for the initial conditions

from the regions marked “l¼ 1” and “l¼�1” are shown in plots (b) and (c)

[blue empty diamonds], respectively. The corresponding predefined pattern

[red filled diamonds] adjusted to the firing times of the reference pattern

[green empty circles] is also shown. The other parameters as in Fig. 9.
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deviation is that the coupling weights Kj in Fig. 12(b) are cal-

culated for the frequency x of the in-phase synchronized ref-

erence pattern. If the oscillations occur at other frequencies,

this will influence the shape of the realized patterns, as illus-

trated in Figs. 13(b) and 13(c).

As a result, we conclude that there exists a large region

in the space of initial conditions, starting from which a

desired stable delay- and/or coupling-induced pattern is real-

ized in the inhomogeneous ensemble. The size of this region

is similar to that of the corresponding reference pattern for

the homogeneous network.

E. Firing patterns induced by inhomogeneous internal
parameters of oscillators

The discussed spatio-temporal patterns can also be cre-

ated by varying parameters of individual oscillators while

keeping the communication delays and coupling strengths

homogeneous. We demonstrate this effect on the ensemble

of nonidentical LC oscillators

z0j ¼ ðaþ ibÞzj � a2
j zjjzjj2 þ lzjþ1ðt� sÞ: (16)

The change of variables

yjðtÞ ¼ ajzjðtÞ (17)

with real constants aj does not influence the phases of the

oscillators, and, hence, the spatio-temporal phase patterns of

both yj and zj solutions will be the same. In the new coordi-

nates, system (16) attains the form of identical coupled

oscillators

y0j ¼ ðaþ ibÞyj � yjjyjj2 þ Kjyjþ1ðt� sÞ (18)

with inhomogeneous coupling weights

Kj ¼
aj

ajþ1

l: (19)

It is easy to see that by an appropriate adjustments of the

nonlinearities aj any possible coupling weight Kj can be

obtained up to the restriction that the geometric mean of the

coupling weights is fixed

K1K2 � � �KNð Þ1=N¼ l:

If we consider l as another control parameter, then the cou-

pling weights can attain arbitrary values by Eq. (18). There-

fore, as follows from Sec. IV B, a variety of firing patterns

can appear in such system, and, hence, in ensemble (16) of

nonidentical oscillators with homogeneous couplings.

V. CONCLUSIONS

We showed that a practically arbitrary periodic spatio-

temporal firing pattern can be produced by a feed-forward

oscillatory neural loop if the communication delays or/and

synaptic weights are appropriately adjusted with one restric-

tion, namely, that each neuron fires only once per period of

the pattern. The appropriate adjustment of the communica-

tion delays is directly reflected by the relative times of the

neuronal firing irrespectively of the underlying neuronal dy-

namics. The variations of the synaptic weights, on the other

hand, affect the phase differences between neurons, which

might be important for the concept of phase delays as com-

pared to the firing time differences explored in the auditory

system.66 A simultaneous variation of the communication

delays and coupling weights can have a cooperative effect on

the coordination of the neuronal firing which further extends

the spectrum of possible firing patterns. We also show that a

variety of spatio-temporal patterns can be induced by an

appropriate adjustment of the internal parameters of the

oscillators. An intriguing multitude of possible delay- and

coupling-induced spatio-temporal firing patterns are illus-

trated on a minimal model of neural networks, and explicit

formulas are presented which allow for a unique encoding of

the patterns by communication delays and synaptic weights.

Furthermore, as indicated in Sec. IV A, the presented

approach can be extended to more complicated network top-

ologies. In this paper, we illustrated our approach on the

coupled limit-cycle oscillators and FitzHugh-Nagumo spik-

ing neurons. Qualitatively the same results have also been

obtained for the more complicated and realistic Hodgkin-

Huxley model,20 which indicates the robustness of the dis-

cussed phenomenon.

These findings contribute to the hypothesis of the tem-

poral coding of information in neural networks by a precise

timing of the neuronal firing. As mentioned in the Introduc-

tion, the signal propagation time latencies as well as synaptic

weights can precisely be adapted in the brain, which may

lead to a precise coordination of the neuronal firing, as we

show in this paper.
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