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Abstract

We consider the dynamics of self-excited oscillators suspended on the elastic structure. We show that for the given
conditions of the structure, initially uncorrelated oscillations of each oscillator can synchronize, i.e., all oscillators
evolve periodically with the frequency of the oscillations of elastic structure. Basing on the theory of linear oscillations
we introduced the mechanism responsible for the observed synchronization. We argue that the observed phenomena are
generic in the parameter space and independent of the number of oscillators and their location on the elastic structure.
� 2006 Published by Elsevier Ltd.
1. Introduction

The phenomenon of the synchronization of a number of self-excited oscillators by periodic signal is relatively well
understood [1–11]. Such a synchronization can be easily detected by looking on whether the oscillations follow the exci-
tation i.e., all oscillators oscillate with the same frequency or not. Recently, it has been shown that self-excited oscilla-
tors can synchronize under the influence of common chaotic signal (the so-called generalized synchronization) [12] or
common random noise [13].

In the current studies we consider the synchronization of nonlinear self-excited oscillators located on (coupled
through) elastic structure. In this case the oscillators are excited by the vibrations of the structure. The intensity of
the excitation on a particular oscillator depends on the location of the oscillator on the elastic structure but all oscil-
lators are excited by the signals with common frequency. We present a numerical study of a realistic model of two
autonomous van der Pol oscillators suspended on the elastic beam.

We show that for the given conditions of the elastic structure initially uncorrelated oscillations of each oscillator can
synchronize, i.e., all oscillators evolve periodically with the frequency of the oscillations of elastic beam. We found that
two types of synchronization are possible: (i) oscillators are in phase and (ii) oscillators are in antiphase.

We argue that the observed phenomena are generic in the parameter space and independent of the number of oscil-
lators and their location on the elastic structure. Additionally, we described the mechanism which explains the observed
synchronization. The introduced mechanism is based on the theory of linear oscillations.
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The paper is organized as follows. In Section 2 we recall some fundamental properties of van der Pol oscillator and
introduce our model. Section 3 describes the observed phenomena of synchronization and introduces the mechanism
responsible for it. Finally, our results are summarized in Section 4.
2. Beam–oscillators system

As an example of self-excited oscillator we considered van der Pol oscillator described by
m€y þ dyðy2 � 1Þ _y þ kyy ¼ 0: ð1Þ
where m, dy and ky are constant. For negative dy system (1) has a stable equilibrium ðy ¼ _y ¼ 0Þ. For positive dy this
equilibrium becomes unstable and the oscillator exhibits periodic self-excited oscillations – after initial time phase tra-
jectories reach limit cycle attractor. Eq. (1) when excited by the periodic signal Z sinxt, where Z and x are respectively
the amplitude and the frequency of the signal, show rich bifurcation behavior which ends with chaos [14–18].

We assumed that two different (in parameter values) van der Pol oscillators are connected to concentrated masses
bases u1 and u2 and located on massless elastic beam as shown in Fig. 1. The evolution of the described four degree-of-
freedom system is given by the following equation:
m1€y1 þ dy1 ðy1 � z1Þ2 � 1
� �

ð _y1 � _z1Þ þ ky1
ðy1 � z1Þ ¼ 0

m2€y2 þ dy2 ðy2 � z2Þ2 � 1
� �

ð _y2 � _z2Þ þ ky2
ðy2 � z2Þ ¼ 0

u1€z1 þ #u1 _z1 þ k11z1 þ k12z2 � dy1 ðy1 � z1Þ2 � 1
� �

ð _y1 � _z1Þ � ky1
ðy1 � z1Þ ¼ 0

u2€z2 þ #u2 _z2 þ k21z1 þ k22z2 � dy2 ðy2 � z2Þ2 � 1
� �

ð _y2 � _z2Þ � ky2
ðy2 � z2Þ ¼ 0;

ð2Þ
where kij is the matrix of stiffness coefficients and # denotes the damping coefficient of the beam. The stiffness coeffi-
cients of the beam kij were calculated by the method based on beam deflection equation (Euler–Bernoulli law)
EId2z/dx2 = Mg [19], where E is the modulus of elasticity of the beam material, and I is the moment of inertia of
the beam cross section about its central line, Mg is a bending moment. We employed the common linear model of
the external damping with coefficients #u1 and #u2 proportional to values of concentrated masses u1 and u2.
3. Synchronization

In our numerical studies of the system (2) we took l = 1.0, l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0,
m1 = m2 = 1.0, dy1 = dy2 = 0.5, ky1 = 2.0, ky2 = 1.0 and assumed beam stiffness EI as a control parameter. Fig. 2a
Fig. 1. Two van der Pol oscillators suspended on the elastic beam.



Fig. 2. Bifurcation diagram of the system (2) l = 1.0, l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0, m1 = m2 = 1.0, dy1 = dy2 = 0.5,
ky1 = 2.0, ky2 = 1.0: (a) beam stiffness EI increases from 1.0e�4 to 3.9 and (b) EI decreases from 1.0e�4 to 3.9.

Fig. 3. Evolution of the system (2) l = 1.0, l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0, m1 = m2 = 1.0, dyl = dy2 = 0.5, kyl = 2.0,
ky2 = 1.0, EI = 0.002: (a) time series and (b) Poincare map.

Fig. 4. Evolution of the system (2) l = 1.0, l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0, m1 = m2 = 1.0, dy1 = dy2 = 0.5, ky1 = 2.0,
ky2 = 1.0, EI = 0.1: (a) time series and (b) Poincare map (as in Fig. 2a).
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Fig. 5. Evolution of the system (2) l = 1.0, l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0, m1 = m2 = 1.0, dy1 = dy2 = 0.5, ky1 = 2.0,
ky2 = 1.0, EI = 0.1: (a) time series and (b) Poincare map (as in Fig. 2b).
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and b presents bifurcation diagrams of y1 (grey marker)and y2 (black marker) versus beam stiffness EI (in logarithmic
scale). We have shown the position of the left oscillator y1 in time when its velocity changes sign from positive to neg-
ative. The position of the right oscillator y2 is shown in the same time. The same idea was applied to plots in Figs. 3–5.
In Fig. 2a the stiffness of the beam EI, was assumed to increase from 1.0e�4 to 3.9. Initial conditions for minimal value
of EI were taken as y10 = y20 = 0.1, z10 = z20 = 0.0, my10 = my20 = mz10 = mz20 = 0.0. Two kinds of motion character were
observed:

(i) Displacements of van der Pol oscillators cause the oscillations of the beam with masses u1 and u2 located on it and
disturb self-exited periodic evolution of the oscillators (initially with the frequencies as01 and as02). In this case
synchronization does not appear. Evolution of each oscillator is quasi-periodic (combination of self-excited oscil-
lations with frequencies as01 or as02 and oscillations of the beam) as can be seen in Fig. 3a and b for EI = 0.002.
Fig. 3a shows time series and Fig. 3b appropriate Poincare map.

(ii) For the given beam stiffness EI the synchronization of oscillators can be observed. System (2) exhibits periodic
behavior with period 1. An example of this behavior is shown in Fig. 4a and b (EI = 0.1 has been taken). Fig. 4a
presents time series and Poincare map is shown Fig. 4b.

Beam stiffness EI in the bifurcation diagram shown in Fig. 2b is in the same range as in Fig. 2a but now it decreases
from 3.9 to 1.0e�4. Initial conditions for maximal value of EI were taken as y10 = y20 = 0.1, z10 = z20 = 0.0,
my10 = my20 = mz10 = mz20 = 0.0. For large values of beam stiffness (EI > 0.123) the evolution of the system (2) is quasi-
periodic (not a periodic one as in the case shown in Fig. 2a). In the range 0.059 < EI < 0.123 oscillators behavior is
periodic, synchronous, but has different form than the one observed in Fig. 2a. An example of this evolution observed
for EI = 0.1 is shown in Fig. 5a and b as time series in Fig. 5a and a Poincare map in Fig. 5b. For lower values of beam
stiffness EI, the system evolution is qualitatively the same as in Fig. 2a.

The results of our numerical investigations show that for EI > 0.123 one can observe coexistence of (at least) two
attractors: periodic and quasi-periodic one. The same situation occurs in the range 0.059 < EI < 0.123 where there
are two different periodic attractors. In the second case independently on initial conditions the behavior of oscillators
is periodic and synchronous but dependently on these conditions oscillators evolve in phase or anti-phase. The examples
of initial conditions leading to both types of evolution are shown in Fig. 6. We assumed EI = 0.1, z10 = z20 = 0.0,
my10 = my20 = mz10 = mz20 = 0.0 and the values of y10 and y20 were taken in the interval [�1.0,1.0].

To explain the synchronization mechanism, let us consider the evolution of van der Pol oscillator with kinematical
excitation shown in Fig. 7. This case is very close to one when the oscillator is connected to elastic beam (as in Fig. 1). In
the numerical analysis we assumed: m = 1.0, dy = 0.5, ky = 1.0. Our investigations have shown that this system can
behave in two different ways. The examples for Z = 0.5 and two different values of x (x = 1.3 and x = 1.15) are shown
in Fig. 8a and b. It can exhibit quasi-periodic evolution, which is a combination of oscillations excited by kinematical
signal with frequency x and self-exited oscillations with frequency as0 (the same as without kinematical excitation) as in
Fig. 8a. The second possibility is a periodic evolution with excitation frequency x (Fig. 8b) where the existence of kine-



Fig. 6. Map of initial conditions leading to phase synchronization (white area) and antiphase synchronization (black area); l = 1.0,
l1 = 0.333, l2 = 0.666, # = 0.2, u1 = u2 = 1.0, m1 = m2 = 1.0, dy1 = dy2 = 0.5, ky1 = 2.0, ky2 = 1.0, EI = 0.1, z10 = z20 = 0.0,
my10 = my20 = mz10 = mz20 = 0.0.

Fig. 7. Kinematically excited van der Pol oscillator.

Fig. 8. Time series of kinematically excited van der Pol oscillator; m = 1.0, dy = 0.5, ky = 1.0, Z = 0.5: (a) x = 1.3 and (b) x = 1.15.

K. Czołczynski et al. / Chaos, Solitons and Fractals 32 (2007) 937–943 941
matical excitation cause the change of the frequency of self-exited oscillation period from as0 to x. The condition of
such a modification of the frequency of self-exited oscillations (i.e., the oscillator is synchronized with kinematical exci-
tation) is a large enough amplitude of kinematical excitation z and a sufficiently small difference between frequencies x
and as0. The minimum value of Z sufficient for synchronization is shown in Fig. 9.



Fig. 9. Amplitudes kinematical excitation Z necessary for synchronization versus excitation frequency x.

Fig. 10. Geometrical configurations of the beam-oscillators system: (a) eigenfrequency 1.218 and (b) eigenfrequency 2.328.
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Our results showed that the displacement of the elastic beam with van der Pol oscillators connected to it can change
frequency of self-exited oscillations and force both oscillators to adopt the same frequency which results in their syn-
chronization. To answer the question what that common frequency will be let us come back to Figs. 4a and 5a which
show time series of periodic oscillations of the beam with connected van der Pol oscillators for EI = 0.1 with different
initial values. It is easy to see that frequencies of the periodic evolution are 2.31 in Fig. 4a and 1.21 in Fig. 5a. One can
find that these frequencies are nearly equal to two of four eigenfrequencies of linear system (2) a1�4 (i.e., system without
damping # = dy1 = dy2 = 0). These eigenfrequencies are respectively equal to 0.885, 1.218, 2.328 and 7.083. It was found
also that the geometrical configuration of the beam–van der Pol oscillators system in these two cases is identical with the
corresponding eigenvector of a linear system. The appropriate geometrical configurations are shown in Fig. 10a and b.
Fig. 10a shows the case with eigenfrequency 1.218 and Fig. 10b one with eigenfrequency 2.328.
4. Conclusions

Our study showed that two van der Pol oscillators suspended on the elastic bean can synchronize when (i) frequen-
cies of self-oscillations of both oscillators as01 and as02 are close to eigenfrequencies ai of the linear system with four
degree-of freedom, (ii) amplitudes of self-excited oscillations generated by van der Pol oscillators and amplitudes of
oscillations of concentrated masses u1 and u2 are large enough to cause the change of self-excited frequencies as01

and as02 to one common frequency ai, (iii) initial conditions allow the system to approach configuration which is close
to appropriate eigenvector.
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Summarizing, we have shown that van der Pol oscillators do not synchronize directly with each other. The oscilla-
tors synchronize their behavior with the evolution of the whole beam-oscillators system the configuration of which is
determined by one of eigenvectors of its linear part. This synchronization mechanism explains the coexistence of dif-
ferent attractors as the phenomenon which occurs when the nonlinear system adopts its behavior (depending on the
initial conditions) to different eigenfrequencies and eigenvectors of its linear part.

The similar synchronization phenomenon was observed in a large range of system parameters and for different loca-
tions of oscillators on the beam so it seems to be robust in the parameter space.

If one increases the number of oscillators, the system will be more dimensional and there will be more beam-oscil-
lators geometrical configurations (like these in Fig. 10a and b) so it will be possible to observe a group (cluster) of oscil-
lators which synchronize in phase while the rest of them synchronizes in antiphase. These results will be published
elsewhere [20].
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