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Abstract

This paper investigates dynamics of double pendulum subjected to vertical parametric kin-
ematic excitation. It includes detailed bifurcation diagrams in two parameters space (excitation's
frequency and amplitude) for both oscillations and rotations in the domain of periodic solutions.
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1 Introduction

The construction of parametrically excited double pendulum is quite simple but its dynamics is
very complex. There is still lack of complete bifurcation diagrams of oscillatory and rotational
motions. The in�uence of the parametric forcing on the dynamical system was investigated by
many researchers. The di�erent directions of excitation for the double pendulum are investigated in
authors` thesis [6], [10].

The chaotic motion is observed, as indicated in [8] or in [9]. The full bifurcation diagrams for
horizontally, elliptically and vertically excited single pendulum are presented by Horton et al [5].

The detailed description of the parametrically excited double pendulum, with a special emphasis
on 2:2 interaction mode can be found in [16]. This work was further expand [17], where authors
show general explanation of the mode interaction. Here theory was proofed by practical experiment.

The dynamical behaviour of the double pendulum, in the vicinity of a number of compound crit-
ical points and the conditions of stability for the steady state solutions, in relation to the parameters
of the systems, were explored by [21], resulting in closed form, achieved using bifurcation analysis
for periodic and quasi-periodic solutions.

The approach towards numerical analysis of chaos in double pendulum is presented in [18]. It
reveals regular behaviour of the pendula at the zero energy limit, which is transformed into quasi-
regular and globally chaotic motion, along with the energy increase. The bifurcation diagrams are
not ordinary, due to energy application as the parameter, instead of one of the parameters occurring
in the equations of motion.

Furthermore, an orthogonal double pendulum with a pivot point subjected to the excitation is
also described in [13]. The used method of averaging allows to investigate the resonant responses of
the system, yielding to bifurcation analysis of the steady state constant solutions. It indicates the
coexistence of planar and non-planar harmonic motion for relatively large base excitations. Tak-
ing into consideration certain regions of parameter space, those motions become unstable and may
bifurcate to quasi-periodic motion with changing amplitude with slow and fast frequency. Men-
tioned quasi-periodic motion is prone to lose stability and lead to chaotic, amplitude-modulated
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motion. Another approach towards investigation of the excited double pendulum is shown in [14].
It documents the parametric resonance causing the stable downward vertical equilibrium and the
the stabilization of the unstable upward equilibrium state by subjecting the whole system to the
high-frequency motion. The issue of excited pendulum was also elaborated by A. Belyakov in [1].
He presented planar rotational motion of the mathematical pendulum with an elliptical excitation
analysis, basing on the exact solutions for the circular trajectory and no gravity. Derivation of ex-
istence and stability of these solutions, allows to �nd approximate solutions for high and low linear
damping, providing not small excitation amplitudes.

In article [19], J.J. Thomsen examines the non-linear dynamics of the elastically restrained double
pendulum with non-conservative follower-type loading and linear damping for the presence of chaotic
motion. It was revealed, that static equilibrium solutions, stable periodic motion and initially
large changes in amplitude due to a destabilizing e�ect of both linear and non-linear forces, are
all the result of a small, local non-linear perturbation. A global numerical analysis proved, that
theoretical assumptions concerning occurrence of the chaotic motion in these regions are correct.
Moreover, the combination of bifurcation cascade of static equilibrium points together with non-
linear destabilization may be treated as the cause of chaos trigger. The very similar system is
presented in [15], however the investigation concerns destabilisation of the equilibrium position
of the double pendulum with elastic end support and follower force loading. Since in Lyapunov
criterion (for determining Lyapunov exponents from a time series, see [20]) is a critical case, non-
linear analysis was performed, utilising centre manifold theory. The occurrence of heterochnic orbits
suggested possibility of divergent and periodic �utter motion, however chaotic motion is also possible.

This paper is organized as follows: in section 2, the considered model of double pendulum is
presented. Section 3 is devoted to the numerical study of the bifurcation diagrams, performed in
two parameters space, namely excitation frequency and amplitude, as well as in one parameter space
(i.e. amplitude) and basins of attractions. Finally, our results are summarised in section 4.

2 Investigated system

In this paper a system of double pendulum excited vertically is described. The system consists of
planar double pendulum with non-elastic limbs. It is assumed that pendula are weightless with point
masses m on each end respectively. The pivot point is vertically excited by parametric kinematic
excitation. The excitation has amplitude A, excitation frequency is equal to ω, l denotes the length
of each pendulum, c is a dumping coe�cient on the pendula' nodes.

In order to derive the equations of motion (4) (5) second order Lagrange's equations are used.
For the system presented in Figure 1, the kinetic energy T is formulated as shown:

T =
1

2
m(2A2ω2 cos2 (ωt) + l(2l(

dθ1
dt

)2 +
dθ2
dt

(−2Aω cos (ωt) sin θ2 + l
dθ2
dt

)

+
dθ1
dt

(−4Aω cos (ωt) sin θ1 + 2l cos (θ1 − θ2)
dθ2
dt

))) (1)

Whereas the potential energy V is given by (2):

V = −mlg (−3 + 2 cos θ1 + cos θ2) (2)

Finally, the Rayleigh`s dissipation function D takes the form:

D =
1

2
c

((
dθ1
dt

)2

+

(
dθ1
dt

− dθ2
dt

)2)
(3)
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Figure 1: Scheme of the investigated system

Putting (1) (2) (3) into second order Lagrange equations and after some mathematical operations
one obtains equations of motions (4) (5).

ml2
[
2
d2θ1
dt2

+
d2θ2
dt2

cos (θ1 − θ2)

]
+ 2ml sin θ1

(
g +Aω2 sinωt

)
+ c

(
2
dθ1
dt

− dθ2
dt

)
+ml2

(
dθ2
dt

)2

sin (θ1 − θ2) = 0 (4)

ml2
[
d2θ1
dt2

cos (θ1 − θ2) +
d2θ2
dt2

]
+ml sin θ2

(
g +Aω2 sinωt

)
+ c

(
dθ2
dt

− dθ1
dt

)
−ml2

(
dθ1
dt

)2

sin (θ1 − θ2) = 0 (5)

In the next part of this paper dimensionless parameters are used: ω0
2 = g

l , γ = ω
ω0
, ρ =

c
ω0ml2 , τ = ω0t, β = A

l , symbols¨and ˙ denote d2

dτ2 and d
dτ respectively. These parameters yield to

dimensionless equations:
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2θ̈1 + θ̈2 cos (θ1 − θ2) + 2 sin θ1
(
1 + βγ2 sin γτ

)
+ ρ

(
2θ̇1 − θ̇2

)
+θ̇22 sin(θ1 − θ2) = 0 (6)

θ̈1 cos (θ1 − θ2) + θ̈2 + sin θ2
(
1 + βγ2 sin γτ

)
+ ρ

(
θ̇2 − θ̇1

)
−θ̇21 sin (θ1 − θ2) = 0 (7)

In the numerical calculations we use following value of dimensionless parameter ρ = 0.04.
In order to calculate the natural frequencies of the system, the equations (7) are linearised

regardless of damping and excitation components.

2θ̈1 + θ̈2 + 2θ1 = 0

θ̈1 + θ̈2 + θ2 = 0 (8)

The natural frequencies calculated from the equations (8) are ω1 =
√

2−
√
2, ω2 =

√
2 +

√
2,

which is ω1 = 0.765, ω2 = 1.848.

3 Results

In this section results of the numerical analysis are presented, which include: the bifurcation diagrams
in two parameters space (excitation frequency γ vs. amplitude of excitation β), bifurcation diagrams
in one parameter space and basins of attractions. The tool for numerical analysis is Auto 07P [3]
and authors' own programme using well-known 4th order Runge-Kutta method, with adaptive step
size, from GNU GSL library version 1.15 [4]. The stability of periodic solutions is checked using
Floquet multipliers [7]. In order to model physical behaviour of the system, the chosen range of
parameters is as follows : γ ∈ [0, 5], β ∈ [0, 3].

The system poses three main characteristic regimes of motion. The �rst one is when the excitation
(parametrised by frequency γ and amplitude β), which is in vertical direction, is not big enough to
start pendula motion. In such a case pendula are in stable �xed point θ1 = θ2 = 0. The other �xed
points : (θ1 = 0, θ2 = π), (θ1 = π, θ2 = 0), (θ1 = θ2 = π) are unstable.

Provided that su�cient energy is delivered to the system via excitation, it is possible to observe
oscillatory motion. Pendula destabilize and after transient time both tends to synchronize with each
other in phase (i.e. θ1 = θ2, θ̇1 = θ̇2), in such a way that one may treat upper and lower pendula as
one pendulum. Results for oscillatory motion are described in details in chapter 3.1.

Finally, providing higher energy to the system (especially for high frequency γ ) it is possible to
obtain rotations. If this is the case, after transient time the pendula rotate together (i.e. θ1 = θ2),
just as in the oscillatory motion, as one pendulum. From the point of view of possible application
of double pendulum as electric power generator these types of solutions are particularly important
for an engineer. Results for rotational motion are described in details in chapter 3.2.

The section is divided into three subsections: subsection 3.1 oscillatory solutions, subsection 3.2
rotations and subsection 3.3 basins of attractions. In subsection 3.1 a case where both pendula
oscillate is presented, which is typical for smaller values of excitation frequency γ. In a case, where
more energy is delivered to the system (i.e. for higher values of excitation frequency γ or excitation
amplitude β), it is easier to set pendula in rotational motion, which is the topic of subsection 3.2
rotations. Finally, the in�uence of the initial conditions of the system on the results is illustrated
by means of basins of attractions in subsection 3.3.
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3.1 Oscillatory solutions

In the Figure 2(a) solutions for oscillatory motion of pendula are presented. The oscillatory periodic
solutions are found usually for smaller energy delivered to the system (i. e. for smaller values
of excitation frequency γ or excitation amplitude β). The system has enough energy to start its
motion, however, not enough for the pendula to start rotation. In the investigated cases the pendula
oscillate synchronised in phase (the lower pendulum follows the upper one). Numerical calculations
�nd basically two locking ratios for oscillatory motion 1:1:1, 2:1:1 (i.e. excitation period : upper
pendulum period : lower pendulum period) The Figure 2(a) focuses on 1:1:1 resonances and presents
the borders of di�erent solutions in two dimensional space (γ, β). The black solid curve represents
the beginning of motion, when pendulum leaves the equilibrium state at stable �xed point (i.e.
θ1 = θ2 = θ̇1 = θ̇2 = 0). It is worth mentioning, that tip of this curve corresponds to the value of
natural frequency ω1 = 0.765 calculated in Chapter 2. The pendula oscillate synchronised in phase.
Figure 2(b) shows the bifurcation scenario in one parameter space (β, max(θ1)). The value of
excitation frequency is set to γ = 0.68. The pendula starts motion for β = 1.60 , which corresponds
to black curve from Figure 2(a). This can be mapped in the Figure 2(b) as an intersection with
β-axis. The grey dashed line presents unstable orbits, while the solid black one stable orbits. Three
stable regions are encountered, which start in saddle-node (SN) and end in period doubling (PD)
bifurcations. Their equivalents in two parameters continuation can be found on the Figure 2(a),
marked with respective colors (thick lines mark SN bifurcations and solid lines PD bifurcations).

The Figure 2(c) presents borders of oscillatory periodic solutions for 2 : 1 : 1 resonance. Here, �ve
curves are found showing di�erent types of bifurcations. The purple one, represents the beginning
of motion. Above this curve the stable �xed point (θ1 = θ̇1 = θ2 = θ̇2 = 0) becomes unstable and
pendula start to oscillate. For values of excitation frequency lower then γ = 1.535 the born solutions
are unstable (subcritical bifurcations), while for higher frequencies solutions are stable (supercritical
bifurcations). The black line corresponds to saddle-node bifurcations, where the unstable solutions
coming form the purple curve can change stability properties. The next curve (blue) represents the
symmetry breaking bifurcations, hence the motion of pendula become asymmetrical with respect to
the equilibrium position. As it is well known [11, 2] two mirror states are observed (one shifted in
clockwise and second one in counter-clockwise direction). The last one, brown line, also indicates
a state when pendula leave the equilibrium and start period-2 oscillations. The red curve presents
the beginning of motion.

To have a good understanding what happened in the vicinity of resonance tongue (γ = 1.535)
we compute three one parameter bifurcations diagrams, as shown in Figure 2(d). The parameters
are γ = 1.2 (red line), γ = 1.4 (blue line) and γ = 1.7 (black line). Gray lines in Figure 2(d)
correspond to positions of aforementioned one parameter diagrams. As previously, the solid lines
indicate stable and dashed lines unstable solutions. The red line (γ = 1.2) for β = 0.591 begins in
the subcritical bifurcation, so the solutions along this curve are unstable. Hence, for β = 0.043 we
observe the saddle-node bifurcation, where curve turns but does not stabilize. Finally, for β = 0.266
the symmetry of this unstable solution is broken. The blue line (γ = 1.4) starts also in subcritcal
bifurcation, hence solutions are unstable. For β = 0.022 we observe stabilization in the saddle-node
bifurcation. Finally, for β = 0.208 the symmetry breaking bifurcations occur. The last curve for
γ = 1.7 (black line) shows di�erent scenario. The bifurcation where the motion originates from is
supercritical, so from beginning the solutions are stable. The change of stability properties occurs
for β = 0.42 in the symmetry breaking bifurcation. All above described scenarios are di�erent and
can be treated as reference bifurcation sequences. Each of them correspond to regions between
cross-sections of two parameter bifurcation lines shown in Figure 2(c).

The curves obtained using the method of continuation are later compared with the results from
numerical integration of the system equations of motions (6) (7). In Figure 3 the results are mapped
with colored regions depending on the type of motion (oscilation, rotation), order of periodicity.
Additionally, curves from earlier �gures are added in order to show the comparison between these 2
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method of system examining. The algorithm used in producing the color regions, creates series of
bifurcation diagrams along with excitation frequency γ for di�erent values of excitation amplitude
β. It analyses the obtained results, the order of periodicity and character of motion (oscillations,
rotations). In case of oscillations, it is obvious, that the black curve from Figure 2, representing the
beginning of motion can be mapped by the green region of period-1 solution. The corresponding
region for other curves presented in the Figure 2 (saddle-node, period doubling pairs) can be found
in the Figure 3(b). It is especially clear, that solid lines for period doubling borders match region
calculated by numerical integration (green to red transition). For the brown curve from Figure 2(c)
describing the 2:1:1 resonances, it is possible to �nd its equivalent on the Figure 3(c). The red region
indicating period-2 oscilation, correspond to the beginning of motion character of brown curve. The
red curve from Figure 2(c) matches with period-2 region in the Figure 3(c). This is a very clear
tongue of resonance 2:1:1.
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Figure 2: Bifurcation diagrams of oscillations the double pendulum (Figure 1) in two parameter
space (γ,β). (a) Diagram representing 1:1:1 resonance. The thick lines apart from the black one
represent saddle node bifurcation, while the thin lines represent period doubling. (b) One parameter
space (β, maxθ1) continuation for γ = 0.68, thick line represent stable solution, while dashed line
unstable. (c) Diagram representing 2:1:1 resonance. (d) One parameter space continuation for:
γ = 1.2 - red , γ = 1.4 - blue, γ = 1.7 - black. Abbreviations of bifurcations: SN - saddle-node, PD
- period doubling and SB - symmetry breaking.
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Figure 3: Bifurcation diagrams of oscillations of the double pendulum (Figure 1) in two parameter
space (γ,β) using 2 methods. (a) Curves from Figure2(a) (1:1:1 resonance) . (b) Detailed view
on Figure 3(b). (c) Curves from Figure2(c) (2:1:1 resonance). Initial conditions for numerical
integration (θ1 = π, θ̇1 = −5, θ2 = π − 0.01, θ̇2 = 5). Abbreviations of bifurcations: SN - saddle-
node, PD - period doubling and SB - symmetry breaking.

3.2 Rotations

Figure 4 presents bifurcation curves for rotating motion of the pendulum. The rotating motion
happens for bigger values of excitation frequency γ. For most of the cases both pendula are rotating.
There exists several cases for rotating pendula. The 2 major ones are both pendula rotating clockwise
and both pendula rotating counter-clockwise. The direction of rotation depends mainly on the initial
conditions applied to the system. However,in periodic domain there exist another combination
when the rotation of pendulua are in the opposite direction. The boarders of obtained solutions
in two parameters spaced obtained by AUTO software are presented in the Figure 4. The possible
combinations (i.e. direction of oscillations) of rotations, computed using numerical integration are
presented on Figure 5. Let us focus on the borders of periodic solutions, using continuation method
(Figure 4) and how they match the results from numerical integration. The cyan curve in the Figure

8



4 represent 1:1:1 branching point. In that case, the results obtained using using continuation and
numerical integration converge, particularly in the bottom region of the discussed curve. Signi�cant
number of period doublings (2:1:1 resonance) are found (3 cases). They are marked in the Figure
4 and Figure 5 as blue curves. The �rst one can be found in region γ ∈ [2.5, 5] β = 0.75 matches
the numerical representation from Figure 5. The detailed can be seen in the Figure 4(b). The next
period doubling worth mentioning is located in the range γ ∈ [2.5, 5] β ∈ [1, 2.5]. Once again the
result from continuation method converge with the numerical integration. However, in this case only
to some extent. The 3rd 2:1:1 period doubling located left from the previously discussed curve, has
only partial coverage in numerical integration result.

Two toruses are to be found in the range γ ∈ [2.5, 5] β = 0.75, red (2:1:1) and green(4:1:1). As
well as in previous cases the numerical integration equivalent can be found for the above mentioned
curves. Moving our attention to the left top corner of the Figure 4(a) (detailed view Figure 4(c)),
one can observe saddle node bifurcation 2:1:1 resonance and small period doubling region 8:4:4.
These �ndings are con�rmed also by numerical integration (see Figure 5).
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Figure 4: Bifurcation diagrams of rotations of the double pendulum (a) Two parameters bifurcation
(excitation frequency γ vs. excitation amplitude β) for rotational solutions. (b), (c) Detailed view
of (a). Abbreviations of bifurcations: SN - saddle-node, PD - period doubling, BP - branching point
and SB - symmetry breaking.
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Figure 5: The rotation curves in two parameter space (γ, β). Each color of background represent
di�erent period order and type of motion (i.e. oscillation, rotations). Initial conditions for numerical
integration (θ1 = π, θ̇1 = −5, θ2 = π−0.01, θ̇2 = 5). Abbreviations of bifurcations: SN - saddle-node,
PD - period doubling, BP - branching point and SB - symmetry breaking.

3.3 Basins of attraction

A phenomena of coexistence of solutions is very often encountered in non-linear dynamics. Therefore,
in order to check if stable period solutions coexist, the system is checked using basins of attractions
for di�erent con�guration of parameters. This section focuses basins of attraction. The software used
for that purpose is Dynamics 2 [12]. The chosen values of parameters are: γ = 0.68, β = 0.85 and
γ = 0.75, β = 1.5 which correspond to the regime of periodic oscillations. Because of the fact, that
the investigated systems has four-dimensional phase space, the obtained results are two-dimensional
cross-sections of four dimensional phase space.

Figure 6(a) is in (θ1, θ2) space, where γ = 0.68 β = 0.85, θ̇1 = 0.5 , θ̇2 = 0.5 and θ1 ∈ [−π, π]
and θ2 ∈ [−π, π]. One can observe 2 symmetric basins (marked as white and red respectively).
The blue area attracts to the stable solution (i.e. θ1 = 0, θ̇1 = 0, θ2 = 0, θ̇2 = 0). The white
and red basins attracts the solution to periodic solution of period-1. In case of Figure 6(b) the
cross section through parameter space is done for di�erent space variables. The basin is in (θ2, θ̇2)
space (position and velocity of the second pendulum), γ = 0.68 β = 0.85, θ1 = −π

2 , θ̇1 = 2 and

θ2 ∈ [−π, π], θ̇2 ∈ [−5, 5]. Here, once again one deals with symmetric basins. 3 regions are found:
the cyan attracts to equilibrium (green dot), the purple basin attract to period-1 oscillations, while
white basin also attracts to period-1 oscillation. One can notice a central symmetry with (θ2 = 0,
θ̇2 = 0) as re�ection point. Finally, the last basin presented in the Figure 6(c) indicates 2 basins of
attraction. The phase space is cut along (θ2, θ̇2) plane, for θ1 = −π

2 , θ̇1 = 2, γ = 0.75, β = 1.5. The
detected basins of attractions attract to period-1 oscillation, which are central symmetrical with
re�ection point (0, 0). The green dot attracts to white basin, while the blue one to the purple basin.

Looking at the every obtained basing one may draw a conclusion that the solution depends
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strongly on the initial conditions. While the basins for the investigated systems are mostly symmet-
rical and attracts to the same type of pendula motion, there is a signi�cant large basin that attracts
to stable �xed point at pendula equilibrium.
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Figure 6: Basin of attractions in di�erent planes and parameters: (a) plane (θ1, θ2), γ = 0.68,
β = 0.85, θ̇1 = 0.5 , θ̇2 = 0.5 (b) plane (θ2, θ̇2),γ = 0.68, β = 0.85, θ1 = −π

2 , θ̇1 = 2 (c) plane

(θ2, θ̇2), γ = 0.75, β = 1.5, θ1 = −π
2 , θ̇1 = 2

4 Conclusions

This paper presents broad numerical analysis of the dynamics of double pendulum excited vertically.
Bifurcation diagrams in two parameter space (excitation frequency γ vs. excitation amplitude β),
as a continuation of periodic solutions, are shown. For oscillations of the pendula two locking ratios
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are observed (i.e 1:1:1 and 2:1:1). However, in case of rotational solutions one obtains also di�erent
locking ratios, such as 4:1:1 or 8:4:4. The emerging of resonance zone happens about excitation
frequency γ = 0.7. Additionally, an iterative numerical integration, in order to check the results
from continuation, is performed. The result of this comparison is successful, because it is possible
to observe similar regions using both methods. Finally, the basins of attractions give the answer on
in�uence of the initial conditions on the solutions. Symmetrical basins are obtained for most of the
cases with 2 periodic basins.
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