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Abstract

In this paper we propose the novel type of tuned mass damper and investigate its properties. Characteristic feature

of the device is that it contains a special type of inerter equipped with a continuously variable transmission and gear-

ratio control system which enables stepless and accurate changes of inertance. We examine the damping properties of

the proposed tuned mass damper with respect to one-degree-of-freedom harmonically forced oscillator. To prove the

potential of introduced device we test its four di�erent embodiments characterized by four di�erent sets of parameters.

We generalize our investigation and show that proposed device has broad spectrum of applications we consider three

di�erent sti�ness characteristics of damped structure i.e. linear, softening and hardening. We use the frequency

response curves to present how considered devices in�uence the dynamics of analyzed systems and demonstrate their

capabilities. Moreover, we check how small perturbations introduced to the system by parametric and additive noise

in�uence system's dynamics. Numerical results show excellent level of vibration reduction in an extremely wide range

of forcing frequencies.
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1. Introduction

E�ective damping of unwanted oscillations of mechanical and structural systems has always been a big challenge

for engineers. One of the �rst attempts to absorb energy of vibrations and in consequence reduce the amplitude of

motion is a tuned mass damper (TMD) introduced by Frahm [1]. The device consists of mass on linear spring such

that its natural frequency is identical with the natural frequency of damped system. As it is well known, the classic

TMD is extremely e�ective in reducing response of the main structure in principal resonance but for other frequencies

(even close to resonant frequency) it increases the amplitude of the system's motion. Modi�cation of the TMD can

be found in the work of Den Hartog [2], where author propose the addition of the viscous damper to Frahm's system

design. Thanks to the presence of damper the TMD can be a powerful device that can reduce vibrations of the

main body in wide range of excitation frequencies around principal resonance. Another modi�cation that can lead

to broaden the range of TMD's e�ectiveness was proposed by Roberstson [3] and Arnold [4] who interchange linear

spring of TMD by the nonlinear one (with the linear and nonlinear parts of sti�ness). In recent years much more

attention is also paid to the possibility of using purely nonlinear spring [5, 6, 7]. Authors show that system with such

spring has no main resonant frequency, hence the TMD works in wide range of excitation frequencies. One can �nd

many successful applications of TMDs which are used to prevent damage of buildings due to seismic excitation [8, 9],

suppress vibrations of bridges [10, 11], achieve the best properties of cutting processes [12, 13], decrease vibrations of

�oors or balconies [14, 15], reach stable rotations of rotors [16, 17, 18], stabilize drill strings [19] and many others.

In this paper, we propose new design of tuned mass damper based on a special type of an inerter. Inerter -

introduced in early 2000s by Smith [20] - is a two terminal element which has the property that the force generated at

its ends is proportional to the relative acceleration of its terminals . Its constant of proportionality is called inertance

and is measured in kilograms. The �rst studies of this device were devoted to the possible application as an element of
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cars' suspensions [20]. It has been shown that oscillations induced by road imperfections and load disturbances can be

reduced more e�ectively using suspensions with inerters. Then, in 2004 Smith and Wang [21] studied several simple

passive suspension struts, each containing at most one damper and inerter. The theoretical results are con�rmed

with experiment showing that suspension layouts with inerter are more e�ective than classical designs with dampers

and springs only. Wang and Su [22] present how the performance of suspension is in�uenced by the non-linearties

which appear due to inerters' construction including friction, backlash and the elastic e�ect. They show that the

performance bene�ts are slightly degraded by the inerter non-linearities but still the overall performance of suspension

with a nonlinear inerter is better than traditional ones, especially when the sti�ness of suspension is large. In 2005

the inerter was pro�tably used as a part of suspension in Formula 1 racing car under the name of J-damper [23].

One can also �nd a series of works about suspensions of railway vehicles employing inerters by Wang et al. [24, 25]

and by Smith and co-authors [26, 27, 28]. As a new type of mechanical element inerter became the subject of growing

scienti�c interest. Its successful application in car suspension resulted in a number of studies on other possible

application areas. Recently [29] Takewaki et al. examined if the advantages of inerters can be bene�cial in devices

protecting buildings from earthquakes. The authors present detailed study showing how allocation of damping device

with inerter on each storey (from �rst to twelfth storey) in�uence the response of the building. In [30] authors study

the in�uence of an inerter on the natural frequencies of vibration systems. They propose di�erent constructional

solutions of one and two degree-of-freedom systems and present how inerters in�uence their dynamics. In a very new

papers [31, 32] authors propose the usage of an inerter as a part of TMDs and prove that the addition the device could

potentially improve damping properties. Numerical results presented in aforementioned paper prove that optimally

designed TMD with inerter outperforms classical TMDs. Still, to work e�ciently, all considered devices have to be

precisely tuned which can be hard to achieve or even impossible in some cases. Moreover proposed TMDs with inerters

su�er from susceptibility to detuning.

The above problems may be eliminated using the device equipped with an inerter that enables stepless and acurate

changes of inertance. Such a property can be achieved by the usage of a continuously variable transmission (CVT) with

gear-ratio control system. In this paper we describe how aforementioned special type of an inerter can be constructed

and successfully implemented in TMD to ease its tuning process, enable simple and e�ortless re-tuning and increase

its range of e�ectiveness.

This paper is organized as follows: Section 2 contains the description of proposed TMD design and its model. In

Section 3 we analyze damping of one-degree-of-freedom structure. The �rst Subsection is devoted to description of

considered model. In the second Subsection we present the results of numerical simulations of structures with linear,

softening and hardening sti�ness characteristic. We analyze four embodiments of presented TMD and show how these

devices a�ect the dynamics of the system. Moreover, we try to characterize and compare their damping performances.

Section 4 includes the description of the control which let us tune the natural frequency of the TMD to the frequency

of external excitation. In Section 5 we check the robustness of the obtained solutions. We analyze the response of the

system in the presence of additive and parametric noise. We summarize our results in Section 6.

2. Design of the tuned mass damper

2.1. Description of the novel TMD construction

Before we present the analysis of damping properties of TMD with an inerter which allows changes of inertance

we describe in detail possible design of such a device. In our patent application [33]we propose the TMD construction

layout that is presented in Fig. 1. The body of the device (1) is constructed as a combination of the two parallel plates

- namely plate (1− p1) and (1− p2) - positioned vertically and integrated with two smaller parallel plates - (1− p3)

and (1− p4) positioned horizontally. Lower horizontal plate (1− p3) is used to mount the device on a structure that

vibrations we want to mitigate in a way that the axis of the device is parallel to the direction of damped vibrations.

The upper horizontal plate (1− p4) has a handle that is used to mount helical spring (2). The other end of the spring

(2) is anchored to another horizontally oriented plate (3). This plate (3) is connected to gear rack (4) guided in two

sliding supports (5) that are mounted in vertical body plates. Thanks to that, massive plate (3) together with gear
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rack (4) can move in direction of the axis of the device and function as a moving element of TMD. Gear rack (4)

cooperates with pinion (toothed gear)(6) that is a�xed on the drive shaft (7) of continuously variable transmission (8)

(in presented construction we assume the usage of belt-driven CVT, but other types are also permissible). Flywheel

(9) that accumulates energy is mounted on the driven shaft (10) of the CVT. Bearings (11) of both transmission shafts

are mounted in vertical body plates.

The device is �rmly �xed to the structure which movement we want to mitigate. Hence, the only element that can

perform the movement with respect to the damped structure is the massive plate (3) together with the gear rack (4).

Both these elements are combined and mounted on the helical spring (2). Reciprocating motion of moving elements

(3, 4) is transferred through rack and pinion and CVT into rotational motion of the �ywheel (9). Therefore, for �xed

CVT ratio the device works similarly to classical TMD equipped with the inerter. Novelty of the proposed device lies

in the fact that ratio between linear velocity of moving mass (3, 4) and rotational speed of the �ywheel can be changed

by manipulating CVT ratio.
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Figure 1: Assembly drawing of the proposed TMD construction layout.

2.2. Model of the proposed device

Technical design presented in Fig. 1 and described in previous Section can be modeled by a simple system

schematically presented in Fig. 2. The model of the device consist of inertial component (A) that is coupled via

elastic link (B), inerter (C), and dash-pot (D) to support (E) that allows �xing the device to the damped structure.

Inertial element (A) can move in vertical direction and imitates massive plate (3) together with the gear rack (4). The
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mass of element (A) corresponds to the total combined mass of parts (3) and (4) and is described by parameter m.

Elastic link (B) corresponds to helical spring (2) and parameter k is used to characterize its sti�ness. Support (E) is

the collective model of the device body and described by parameter MTMD. Value of parameter MTMD is equal to

the total mass of the elements that cannot perform the movement with respect to a damped structure, namely parts

(1, 2, 5, 6, 7, 8, 9, 10, 11). The inerter (C) is described by parameter I equal to inertance currently introduced to the

system. In order to better imitate real device characteristics we add a dash-pot (D) which models damping that is

always present in the system due to internal damping, friction and motion resistance introduced by the presence of

CVT [36, 37]. Dash-pot (D) is described by viscous damping coe�cient cT .

Parameters m, k, MTMD, cT are constant and cannot be changed during operation of the device while value of

parameter I can be modi�ed as it depends on the current transmission ratio. CVT ensures that parameter I can be

changed smoothly in a given range, that is de�ned by the range of achievable CVT ratios. Model presented in Fig. 2,

although very simple and described by only 5 parameters, is fully capable of describing the dynamical behavior of the

device presented in Fig. 1.

( )B

( )A

( )E

( )D( )C

m

k I cT

MTMD

Figure 2: Scheme of the proposed TMD model.

2.3. Characteristics of the considered TMD

The classical TMD introduced by Frahm [1] consists of mass on a linear spring. Such a device is extremely e�ective

in suppressing oscillations of the main structure when its vibrations frequency is close to the natural frequency of TMD.

For frequencies outside small range it increases the amplitude of the system's motion. Because of this disadvantage, the

classical TMD has extremely small range of e�ectiveness, hence it is hardly ever used. Modi�cations of TMD design

such as addition of a viscous damper, usage of nonlinear spring instead of linear one and etc. lead to extension of the

range of e�ective damping but also impairs damping properties in principal resonance (when vibrations frequency is

equal to the natural frequency of TMD). Therefore, one always has to decide what the priority is: the most e�ective

mitigation of vibrations for given frequency or achieving the tolerable damping properties in a wide range of vibration

frequencies. This problem can be minimized by novel types of TMDs which incorporates inerters or magnetorheological

dampers that are intensively developed nowadays. Unfortunately, all of the devices are not as e�cient as classical

TMD for its tuned frequency. Moreover, the more complicated the design of the device, the more di�cult to tune it

precisely. The other problem, which is rarely addressed, is susceptibility to detuning which often strongly impairs the

chances of application.

The solution for the problems would be the TMD with as small damping as permissible (to secure best possible

damping e�ciency for natural frequency of the device) and controllable natural frequency. The TMD of the design

proposed in this paper (see Fig. 1) meets both of these requirements. There are no dampers in its construction and

thanks to its unique design one can easily and steplessly change the natural vibrations frequency of the device. The

formula that describes the natural frequency of the considered TMD is the following:

ωTMD(m, k, cT , I) =

√
k

m+ I
−

c2T
4(m+ I)2

(1)
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Natural frequency of the considered TMD does not depend on parameter MTMD which only describes the increase

of damped structure mass caused by installation of the TMD. As it was described in Section 2.2 parameter I is

controllable (it describes inertance that depends on current CVT ratio) while values of other in�uencing parameters

m, k and cT are constant. Therefore, since the device does not contain any additional damping sources, we assume

that
c2T

4(m+I)2 ≈ 0 and consider the natural frequency of the device as a function of inertance value only:

ωTMD(I) =

√
k

m+ I
(2)

Thanks to the presence of CVT which enables stepless changes of inertance ωTMD(I) can be smoothly adjusted

to achieve best damping properties for given frequency of vibrations during tuning or re-tuning process. Possibility

of e�ortless re-tuning is a great advantage because in many cases during the design of TMD for given structure we

cannot determine exact values of its most important parameters.

Although in this paper we consider passive vibration control, damping performance and applicability of the pro-

posed TMD can be enhanced through the use of semi-active or active control system. Control system should be

responsible for measuring current frequency of vibrations which want to mitigate and adjust inertance value to achieve

maximum reduction of damped structure amplitude. Proposed TMD equipped with proper control system would be

particularly e�ective in relation to the structures that are forced with varying frequencies. Currently we are optimizing

control algorithm for prototype device and in our next paper we are going to describe the performance the prototype of

proposed TMD supplied with active control system. Nevertheless, preliminary simulations let us think that proposed

TMD will provide excellent performance and a wide range of e�ectiveness, potentially o�ering improvement over other

known TMDs.

It is important to mention that most of the bene�ts of the novel TMD we owe the use of CVT. If it would be

replaced with standard transmission there will be �nite number of accessible inertances resulting in �nite number of

achievable natural frequencies of TMD. Therefore, in most cases we would not be able to tune the device precisely.

Moreover, it would be much harder to implement control system which would increase capabilities of the device.

Natural frequency of the TMD could also be a�ected by changes of the spring sti�ness. Such changes can be realized

(also in a stepless manner) by changing geometrical measures of the spring or its material properties (for example by

usage of shape memory alloys [34, 35]). Nevertheless such a device would be much harder to control and would have

smaller range of accessible natural frequencies.

3. Damping of one-degree-of-freedom structure

In this section we examine damping properties of the proposed novel TMD. As the model of the structure which

motion we want to mitigate we use one-degree-of-freedom periodically forced oscillator with viscous damping. To

have a general overview of system's dynamics we assume three di�erent damped structure sti�ness characteristics,

i.e., linear, hardening and softening. To emphasize capabilities of the proposed TMD we choose four di�erent sets of

parameters and for each of them check the damping performance of the device.

3.1. Model of the considered system

The analyzed system is shown in Fig. 3. It consists of two oscillators that can move in vertical direction. The

�rst oscillator is connected with the support and forced by harmonic excitation. It is used as a model of the structure

which vibrations should be mitigated and will be called base oscillator. The second oscillator is connected to the �rst

one and represents the TMD of the design described in previous Section.

The motion of the system is described by two generalized coordinates: the vertical position of the base oscillator

by coordinate x, while the vertical displacement of the TMD by coordinate y. The notation of parameters used to

characterize the base oscillator is as follows: M is the mass of the oscillator, k1 and k2 are the linear and non-linear

parts of the base oscillator spring sti�ness and its viscous damping coe�cient is given by parameter c. For simplicity,

parameter M describes total mass of the base oscillator hence, it should be calculated as a sum of two masses. The
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�rst is the mass of the structure which vibrations we want to mitigate and the second refers to the mass of the TMD

body given by parameter MTMD. To describe the TMD itself we use the following parameters: m is the mass, k

describes spring sti�ness, cT is a viscous damping coe�cient and I represents the inertance of the inerter.

k +k  x1 2

2

x M

c

Ik c

m
y

T

F ( t)cos ω

Figure 3: Model of the system and notation of system's parameters.

Using Lagrange equations of the second type one can obtain equations of motion:

Mẍ+ k1x+ k2x
3 + cẋ+ I (ẍ− ÿ) + k (x− y) + cT (ẋ− ẏ) = F cos (ω0t) , (3)

mÿ − I (ẍ− ÿ)− k (x− y)− cT (ẋ− ẏ) = 0, (4)

where F cos (ω0t) is a harmonically varying excitation with the force amplitude F and the frequency ω0.

Introducing dimensionless time τ = tω (ω =
√

k1

M is the linear approximation of the natural frequency of the base

oscillator) and the reference length l0 = 1.0[m] one can rewrite equations in dimensionless form:

ẍ′ + x′ + k2Dx′3 + cDẋ′ + ID (ẍ′ − ÿ′) + kD (x′ − y′) + cTD (ẋ′ − ẏ′) = FD cos (ω′τ) (5)

mDÿ′ − ID (ẍ′ − ÿ′)− kD (x′ − y′)− cTD (ẋ′ − ẏ′) = 0 (6)

where: x′ = x
l0
, ẋ′ = ẋ

l0ω
, ẍ′ = ẍ

l0ω2 , y
′ = y

l0
, ẏ′ = ẏ

l0ω
, ÿ′ = ÿ

l0ω2 , k2D =
k2l

2
0

Mω2 , cD = c
Mω , ID = I

M , kD =
kl20
Mω2 ,

cTD = cT
Mω , mD = m

M , FD = F
Ml0ω2 , ω

′ = ω0

ω . This way of transformation to dimensionless parameters allows to hold

accessibility to physical parameters. We also introduce the dimensionless natural frequency of the TMD de�ned as:

ω′
TMD = ωTMD

ω . For simplicity primes in dimensionless equations will henceforth be neglected.

The model of the system could be realized by the simple experimental rig. In numerical calculations we use

parameters' values that correspond to possible realization of the rig: M = 100 [kg], k1 = 24·103 [Nm ] (which corresponds

to a pair of 6924 Lesjofors AB compression springs in accordance with standard EN 10270-1 SH); c = 124 [Ns
m ]

which is equal to 4% of critical damping - we assume that small damping is present due to internal resistances.

Amplitude of forcing is equal to F = 192 [N ] (that can be generated using three-phase induction motor such as Tamel

4Sg90L-6-IE2 with imbalanced rotor). We perform analysis for three di�erent values of parameter k2: k2 = 0 [ N
m3 ],

k2 = −720 · 103 [ N
m3 ] and k2 = 1440 · 103 [ N

m3 ] which corresponds to linear, softening and hardening characteristic of

the spring respectively. Parameters values after transformation to dimensionless form (depicted by letter D) are as
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follow: cD = 0.08, FD = 0.008 and three considered values of k2D: k2D = 0, k2D = −30 and k2D = 60. Parameters

m, k, cT that describe the TMD are changed during numerical simulations similarly to the inertance I that is our

controlling parameter.

3.2. Numerical results

In order to show damping properties of the proposed TMD design we analyze the response of the base oscillator.

Additionally, to emphasize the versatility of introduced TMD layout we consider four representative devices character-

ized by given sets of parameters (with di�erent masses, spring sti�nesses, damping coe�cients and ranges of reachable

inertances). For each considered set of parameters we examine the damping e�ciency of the device with respect to the

base structure with linear, softening and hardening spring sti�ness characteristic. In Table 1 we present parameters

and ranges of accessible dimensionless natural frequencies ω′
TMD of four analyzed TMD embodiments along with types

of lines by which they are marked in plots.

For the �rst two embodiments we assume that mass of TMD moving element is equal to 10% of base oscillator's

mass (m = 10 [kg]), while for third and fourth analyzed TMD it is increased to 20% (m = 20 [kg]). For each case

springs sti�ness and accessible range of inertance are chosen so that the range of accessible dimensionless natural

frequencies of the device is ωTMDϵ < 0.5,
√
2 >(dimensionless resonant frequency of the base oscillator, in linear

approximation, is equal to 1.0)

First set of parameters (No. I) contains the following values: m = 10 [kg], k = 9.6 · 103 [Nm ], cT = 30.98 [Ns
m ]

(which corresponds to 5% of critical damping) and inertance I in the range from I = 10 [kg] to I = 150 [kg]. After

transformation to dimensionless values we get: mD = 0.1, kD = 0.4, cTD = 0.02 and IDϵ < 0.1, 1.5 >. In the second

case (No. II) we consider the TMD with decreased damping coe�cient to 1% of critical damping (see Table 1). In

the third (No. III) and fourth (No. IV) case the mass of TMD is increased twice m = 20 [kg] and the sti�ness is

increased by 50% k = 14.4 · 103 [Nm ]. The damping coe�cients are chosen so that their values correspond to 5% and

1% of critical damping for No. III and No. IV respectively. The ranges of accessible inertance are adjusted to ensure

assumed range of accessible natural frequencies of the device (details in Table 1). The four sets of parameters values

presented in Table 1 were chosen speci�cally to enable the description of how mass of the device and viscous damping

coe�cient in�uence the dynamics of the considered system.

No.
Parameters Dimensionless parameters

Line type
cT [Ns

m
] m [kg] k [N

m
] I [kg] cTD mD kD ID ωTMD

I 30.98 10 9600 < 10, 150 > 0.02 (5% of CD) 0.1 0.4 < 0.1, 1.5 > < 0.5,
√
2 >

II 6.197 10 9600 < 10, 150 > 0.004 (1% of CD) 0.1 0.4 < 0.1, 1.5 > < 0.5,
√
2 >

III 53.66 20 14400 < 10, 220 > 0.03464 (5% of CD) 0.2 0.6 < 0.1, 2.2 > < 0.5,
√
2 >

IV 10.73 20 14400 < 10, 220 > 0.006928 (1% of CD) 0.2 0.6 < 0.1, 2.2 > < 0.5,
√
2 >

Table 1: Sets of parameters that characterize four considered TMD embodiments and line types used to demonstrate their attributes. CD
stands for critical damping.

We assume that damping properties should be preserved in a wide range of excitation frequencies. The best

measurable indicator of amplitude decrease is comparison of frequency response curves (FRC) of base oscillator without

and with TMD. For that reason for each considered set of TMD parameters we pick 200 equally spaced values of ID

from the accessible range of inertance and for each of them calculate the FRC using continuation method (AUTO-

07p package [38]). Next, we superimpose received curves and �nd minimum amplitudes of the base oscillator for

ωϵ
(
0.5,

√
2
)
. As a result we obtain the curve that can be used to evaluate damping e�ectiveness of the proposed

TMD.

3.2.1. Structure with linear sti�ness characteristic

In this subsection we analyze the mitigation of vibrations of the system with linear sti�ness characteristic (k2D = 0).

Results obtained by the path-following method are presented in Fig. 4. Dashed lines in Fig. 4(a) and (b) demonstrate

the response of the base oscillator without TMD. In Fig. 4(a) we show changes of the base oscillator response when
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No. II set of parameters of TMD is used. In Fig. 4(a) gray lines correspond to FRCs of base oscillator with the TMD

for equally spaced values of inertance ID from the accessible range ID ∈< 0.1, 1.5 >(we plot every tenth from 200

FRCs not to blur the �gure). Analyzing the shape of the FRCs one can say that parameter ID signi�cantly in�uences

the response of the structure and determines the position of the minimum along FRC. Therefore, to fully present

bene�ts from the changeable inertance we plot the black solid line that is created as a connection of points where

we observe minimum values of the base oscillator amplitude. It is clearly visible that in the considered range of the

excitation frequencies the amplitude of the base oscillator decreased signi�cantly.

Procedure described above was performed also for Nos. I, III and IV of TMD parameters' sets. Results of

the computations are presented in Fig. 4(b). Comparing the shapes of FRCs obtained for four considered TMDs

realizations one can say that changes of mass and damping coe�cient of TMD strongly a�ect its damping properties.

Analysis of Fig. 4(b) leads to conclusion that the bigger the mass of the device (m) and the smaller the damping

coe�cient (cT ) the better damping e�ciency can be achieved. The di�erence between the FRC obtained for considered

devices is especially visible for ωϵ(0.5, 1.1). Still, we see that all considered embodiments of the TMD signi�cantly

decrease the base oscillator amplitude for all excitation frequencies and the reduction of the amplitude is the more

noticeable, the larger ω.

In practical applications it is often a priority to minimize the mass of the TMD. Then, we have to assure possibly

small damping coe�cient to preserve good damping in a wide range of excitation frequencies. But, in real devices

there is always some internal sources of damping that cannot be eliminated. Hence, we cannot decrease damping

below some threshold that is determined by the construction of the device. Therefore TMD's parameters should be

optimized speci�cally for the purpose and according to speci�ed preferences.
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Figure 4: FRCs of the base oscillator with linear sti�ness and attached TMDs. Subplot (a) presents in detail results obtained for the No.
II set of TMD parameters , on subplot (b) comparison between all four TMD embodiments (Nos. I-IV) is presented. The black dashed
line corresponds to the FRC of system without TMD, gray lines in subplot (a) show the FRC for system with TMD for di�erent ID values.

3.2.2. Structure with softening sti�ness characteristic

In this part we examine the e�ciency of the proposed novel TMD with respect to structures with softening sti�ness

characteristic. Therefore, we introduce the non-linearity into the model of the base oscillator by changing the value of

non-linear part of its spring sti�ness to k2D = −30. Because of the non-linearity we observe changes in the stability

along the FRC which occur in two saddle-node bifurcations for ω = 0.8984 and ω = 0.8178. Between the bifurcations

two stable solutions coexist. As it is well known the range of coexistence results in an unwanted rapid jumps in

amplitude (both, for increase or decrease of excitation frequency).

Results for the system with softening spring are presented in Fig. 5. Dashed lines in Fig. 5(a) and (b) demonstrate

the response of the base oscillator without TMD. In Fig. 5(a) e�ects of application of No. II TMD are shown. Gray

lines in Fig. 5(a) are the base oscillator FRCs calculated for 21 equally distributed values of ID parameter (from 200
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calculated) in its accessible range ID ∈< 0.1, 1.5 >. Black solid line shown in Fig. 5(a) is created by connecting the

minimum points along aforementioned 200 FRCs. Hence, the black solid line can be treated as the FRC for the system

with No. II embodiment of TMD with controllable CVT. By the proper choice of inertance of the TMD we are able

to stabilize the response of the base oscillator in the whole range and no bifurcations are observed.

In Fig. 5(b) we present damping performance of all four analyzed embodiments of TMD. The shape of the lines are

almost identical as for linear case (see Fig.4(b)) because thanks to the presence of TMD amplitudes of base structure

for all ω values are too small to observe the e�ects induced by non-linearity of the spring. Similarly, the conclusions

that can be formulated after comparison of investigated exemplars are the same as those expressed in Subsection 3.2.1.

(a)

m
a

x 
(x

)

0.16

0

0.04

0.12

0.08

ω

1.0 1.40.6 0.8 1.2

(b)

TMD I

TMD II

TMD III

TMD IV

W/O TMD

m
a

x 
(x

)

0.16

0

0.04

0.12

0.08

ω

1.0 1.40.6 0.8 1.2

Figure 5: FRCs of the base oscillator with hardening sti�ness characteristics and attached TMD. Subplot (a) presents in detail results
obtained for No. II set of TMD parameters , on subplot (b) comparison between all four TMD embodiments (Nos. I-IV) is presented.

3.2.3. Structure with hardening sti�ness characteristic

For complementary of presented analysis, after studying the behavior of systems with linear and softening sti�ness,

in this Subsection we consider base oscillator with hardening rigidity described by k2D = 60. Dashed lines in Fig.

6(a,b) correspond to the FRC of the base oscillator without TMD. Two saddle-node bifurcations can be observed along

the FRC for ω = 1.159 and ω = 1.116. Similarly to previous Subsections in subplot (a) of Fig. 6 we present in detail

performance of the second TMD embodiment (No. I) and in subplot (b) of Fig. 6 compare properties of all four TMD

exemplars considered in this paper.

In Fig. 6(a) 21 gray lines correspond to FRCs calculated for uniformly distributed values of ID parameter (out of

200 computed) from its accessible range ID < 0.1, 1.5 >. Black solid line shown in Fig. 6(a) was formed by merging

minimums of 200 FRCs calculated for equally spaced values of ID. Four lines presented in Fig. 6(b) are created in the

same procedure and correspond to four examined TMD embodiments. These lines present the decrease of the base

oscillator amplitude that can be achieved thanks to the presence of the CVT in the TMDs constructions. All considered

TMDs reduce the amplitude of base oscillator e�ectively enough to make its non-linear sti�ness characteristic barely

visible. Therefore, FRCs calculated for the system with hardening sti�ness characteristic and TMDs are almost

identical to the ones obtained for models with linear and softening rigidity (see Fig.4(b) and Fig.5(b) ).
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Figure 6: FRCs of the base oscillator with softening sti�ness characteristics and attached TMD. Subplot (a) presents in detail results
obtained for No. II set of TMD parameters, on subplot (b) comparison between all four TMD embodiments (Nos. I-IV) is presented.

4. Control algorithm

In this section we present a simple control algorithm which let us calculate the intertance ID of the TMD for

given frequency of exaction. Doubtlessly, such control is required in the experimental realization to follow changeable

frequency of system's excitation. Let us �rst rewrite the formula (2) in dimensionless form:

ωTMD(ID) =

√
kD

mD + ID
, (7)

it describes the natural frequency of the TMD.

In classical constructions of the TMD, its natural frequency should be tuned to the natural frequency of the

damped system. In our model, thanks to changeable inertance, we are able to tune the TMD's natural frequency

to the frequency of external excitation ω. In Eq. (7) we substitute in place of ωTMD(ID) the frequency of external

excitation ω. Hence, we can derive the expression which let us calculate the value of inertance ID for given value of ω:

ID =
kD
ω2

−mD. (8)
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Figure 7: FRCs of the base oscillator with linear (a), softening (b) and hardening (c) sti�ness characteristics of the base system. The black
lines indicate the FRCs copied from Figs (4-6) and the gray lines correspond to FRCs with control for two sets of TMD's parameters:
TMD I (upper curves) and TMD IV (lower lines).

Based on formula (8) we recompute the FRCs of damped systems. In Figure 7 we show the response of the damped

system for linear (Figure 7(a)), softening (Figure 7(b)) and hardening (Figure 7(c)) characteristic of the base system's
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spring. We select two out of four sets of the TMD's parameters: upper (TMD I) and lower (TMD IV) curves. The

black lines indicate the FRCs copied from Figs 4-6, while the gray lines correspond to FRCs obtained with control. As

it is easy to see, the discrepancy between curves is small, that con�rms that the simplest form of control is su�cient.

The addition of the damping in�uence to control (according to Eq. (1)) does not increase the e�ciency of control,

because precise value of the damping coe�cient is usually hard to measure (here, damping includes: internal damping,

friction and motion resistance introduced by the presence of CVT). Hence, the computed value of interance ID is also

slightly miscalculated.

Note, that the results are nearly identical for three types of the base system. This similarity is caused by small

amplitudes of the systems with TMDs (the sti�ness nonlinearity does not play a signi�cant role).

5. Dynamics of the system under the presence of noise

In real system, we cannot avoid the in�uence of internal and external noise. We can distinguish two main types

of noise [39]. A parametric noise is always present in any real mechanical device or part (inaccuracy in measuring of

system's parameters) and the second type, widely used to verify the robustness of solutions, is an additive noise. We

simulate both cases assuming that noise signal ζ is composed of statistically independent random numbers chosen at

each time τ from the uniform distribution with a zero mean ⟨ζ⟩ = 0.0 in the interval [−1.0, 1.0]. Parameters σa and

σp control the strength of the noise signal for additive and parametric case respectively.

In our model we introduce the parametric noise to the damping coe�cient of the TMD (cT + ζσp). Parameter cT

includes internal damping, friction and motion resistance introduced by the presence of CVT, hence we can expect a

discrepancy in its value. The additive noise (ζσa) is added to the equation of inerter (Eq. (6)). For each type of noise

we calculate the FRCs based on the control algorithm introduced in the previous section.
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Figure 8: The response of the system with softening spring characteristic (a) parametric noise and (b) additive noise. The black lines
indicate the FRCs copied from Fig (7) and the light and dark gray dots correspond to the response under the presence of noise.

We investigate the in�uence of noise only for the system with softening spring characteristic because there is no

qualitative di�erence between the FRCs for all three types of the base oscillator (see previous section). The results for

parametric noise are presented in Figure 8(a). We take the following values of the noise strength: σp = 0.1cTD and

σp = 0.5cTD, the �rst one corresponds to cTD = 0.08 ± 0.008 and the second one to cTD = 0.08 ± 0.04 (notice that

the damping is still relatively small). We calculate the responses for two out of four sets of TMD's parameters: upper

curves (TMD I) and lower lines (TMD IV). The black lines correspond to the system without noise (σp = 0.0), the

dark gray dots to σp = 0.1cTD (dots overlap with the black line) and light gray dots to σp = 0.5cTD. For σp = 0.5cTD

the maximum amplitudes of the damped system are slightly lower, this suggests that by proper tuning of damping

coe�cient value we can still decrease the maximum amplitudes of the base system.
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More signi�cant discrepancy between the response of the system without and with noise is observed for additive

noise (Figure 8(b)). Similarly in this case we introduce three values of noise strength σp = 0.0 (no noise, black lines),

σp = 0.001 (dark gray dots) and σp = 0.01 (light gray dots). One can see that the in�uence of the noise with strength

σp = 0.001 is small (dots overlap with the black lines), however for σp = 0.01 the maximum amplitudes of the damped

system are spread in the wider range.

Incontrovertibly, this analysis shows that the TMD decreases the base system's response even in the presence of

external noise and presented device can work in real (experimental) systems.

6. Conclusions

In this paper we present and analyze properties of novel TMD design that is characterized by the presence of

an inerter with controlled CVT that enables stepless changes of inertance. This allows smooth changes of natural

vibrations frequency of the TMD. Therefore, by proper tuning of CVT gear-ratio one can adjust TMD's natural

frequency of vibrations to the current frequency of excitation. Thanks to this feature TMD introduced in this paper

is extremely easy to tune even without knowing the precise values of damper structure parameters. Moreover it o�ers

an extraordinary ability to be re-tuned by changes of inertance.

To show damping performance of presented TMD design we examine its e�ciency with respect to one-degree-of-

freedom harmonically forced oscillator. For generalization, we consider the base oscillator with three di�erent sti�ness

characteristics: linear, softening and hardening. To prove the versatility of the device we check damping performance

of its four embodiments characterized by di�erent sets of parameters. For all considered sets of TMD's parameters

one can observe a signi�cant decrease of amplitude of motion in wide range of excitation frequencies. In each case

all analyzed TMD realizations reduce the amplitude of base structure so e�ciently that e�ects of nonlinear sti�ness

characteristics are barely visible and FRCs calculated for systems with di�erent rigidity are almost identical. Note,

that their FRCs without TMDs are completely di�erent.

Comparing the performance of four analyzed exemplars one can say that changes of mass and damping coe�cient

of TMD strongly a�ects its damping properties. The di�erence in systems response is especially visible for ωϵ(0.5, 1.1).

Despite the sti�ness characteristic of the damped structure we can say that the bigger the mass of the device (m)

and the smaller the damping coe�cient (cT ) the better damping e�ciency can be achieved. Presented results prove

that all four considered embodiments of the TMD signi�cantly decrease the base oscillator amplitude for all excitation

frequencies. Complete analysis of how parameters that are used to describe proposed design of TMD in�uence its

properties requires much more calculations and will be the subject of our upcoming paper.

Numerical results presented in this paper prove that introduced construction of TMD provides remarkable damping

properties in a notably wide range of vibration frequencies along with easy tuning and re-tuning ability. We introduce

thr control that enables to adjust inertance's value depending on the measured frequency of vibrations. Still, capa-

bilities of the proposed TMD can be enhanced through the use of more advanced control. The damping properties

are also preserved when noise is present in the system. This allows to claim that presented results are robust as they

exist in the wide range of system's parameters in the presence of noise.

Proposed device would be particularly e�ective in relation to the structures that are forced with varying frequencies.

In our next paper we will present control algorithm for the presented novel TMD and validate results of numerical

simulations by experimental investigation of the prototype.
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