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In this paper we analyze the dynamics of two externally forced Du�ng oscillators interacting
via soft impacts using the extended basin stability method. Investigated system is multistable
with di�erent types of coexisting solutions (periodic with and without impacts and chaotic). The
extended basin stability method let us estimate the occurrence probability of solution or given
type of behavior for assumed parameters and initial conditions ranges. We present the general
study of system behavior focusing on the existence of a non-impacting periodic solutions. We
show how selected controlling parameters and initial conditions a�ect the response of the system.
Proposed method is robust and can be utilize for a variety of engineering applications where the
parameters are varying.
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1. Introduction

The multistability is a common state in strongly non-linear systems [Czoªczy«ski et al., 2009; Yanchuk et al.,
2011; Frazier & Kochmann, 2017; Noël et al., 2017; Galias, 2017; Harne & Goodpaster, 2018]. It results
in coexistence of more then one solution for given set of system parameters. Typically, in engineering
application we consider multistability as a dangerous state because we are not sure if the system will reach
expected solution or it will evolve to di�erent one [Chudzik et al., 2011; Pisarchik & Feudel, 2014; Klinshov
et al., 2015; Ruzziconi et al., 2016; Varshney et al., 2018]. Thus, the analysis of coexistence of solutions is
crucial for reliability of engineering system.

In case of one degree of freedom (DoF) system we can obtain the knowledge about its dynamics by
calculating basins of attraction [H.E. Nusse, 1998; Capecchi & Bishop, 1994; Nusse & Yorke, 1996; de Souza
& Caldas, 2001]. We can get the complete information about a number of solutions and size of their basins of
attraction. However, in in multistable systems the size of a basin of attraction changes with time evolution
along the orbit [Parker Eason et al., 2014; Goncalves et al., 2014]. Recently, we proposed the �rst measure
to characterize the evolution of stability margin along stable periodic orbits [Brzeski et al., 2018]. With the
method we are able to describe di�erent sensitivity to a perturbation while without the method one have
to calculate several projections of basins of attraction to see how they change. More problems arise when
the dimension of the phase space increases, because in such case classical basins of attraction show just
a two dimensional projection of multidimensional phase space. Hence, basins of attraction give complete
information about dynamics only for one DoF systems. To overcome this problem, one can use one of sample
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based methods. Rega and Lenci proposed �basin integrity measures� [Rega & Lenci, 2005; Lenci & Rega,
2008, 2011; Belardinelli & Lenci, 2016; Belardinelli et al., 2018] that describe the erosion of basins, i.e.,
global integrity measure and integrity factor. These measures enable to asses if the basin has safe, compact
structure or fractal. For low dimensional systems this method gives precise information about structure
of phase space. Nevertheless, basin integrity measures are hard to obtain for system with multiple DoF.
The second method called �basin stability� has been developed by Menck et. al. [Menck et al., 2013, 2014].
Basin stability method let us to quantify stability basing on the probability of reaching given attractor from
random initial conditions. To calculate basin stability measure one has to perform a signi�cant number of
Bernoulli trials.Each trial refers to direct numerical integration of the system with randomly chosen initial
conditiions. The result of the trial is the type of attractor that is reached. Then, one can calculate the
probability of reaching given solution. The idea is that with the su�cient number of trials this probabilty
re�ects the realtive volume of basin of attraction of given soluton. This method was successfully applied
in a numerous applications [Menck et al., 2014; Maslennikov et al., 2014] and di�erent expansions of the
mehod were proposed. In our previous papers, we describe extension of this method [Brzeski et al., 2016].
Additionally to initial conditions we draw the parameter values of the system. Such approach let us include
in the analysis the uncertainty of parameter values and perform e�cient investigation of coexisting solutions
for systems with varying parameter values. The proposed method has been validated with experimental
study [Brzeski et al., 2017b]. The next method �basin entropy� has been proposed by Daza et. al. [Daza
et al., 2016] who propose another sample based algorithm to test the structure of basins of attraction to
assess its fractality. The detailed description of sample based methods can be found in a review paper by
Brzeski and Perlikowski [Brzeski & Perlikowski, 2018].

In this study, we analyze dynamics of oscillators which interact via soft impacts. Impacts are common
in many types of systems, such as gear boxes, tooling machines, vibro-impact oscillators, drilling machines
and many more [Lenci & Rega, 1998; Qun-hong & Qi-shao, 2003; Kapitaniak et al., 2018; Liang et al., 2018].
Impacts appear if the motion of an element is limited by a barrier or as an interaction of two elements
of a machine. To model such interactions we can employ either hard or soft impact model [Dankowicz &
Piiroinen, 2002; Ferrer et al., 2010; Andreaus et al., 2013, 2010]. In the �rst approach, the time of contact is
assumed to be in�nitely small and the energy exchange to happen instantaneously, while in the latter the
contact time is assumed to have a non-zero value, and the body is assumed to penetrate the base. Hence,
interaction via soft impacts requires elastic element in the model of such contact. It is done with a spring
(of either the linear or non-linear type e.g. Hertizian) and a viscous damper [Czolczynski et al., 2017; Liu &
Chávez, 2017; Liu et al., 2018]. The impacts can be then considered as discontinuous transient coupling, and
in this case the equations of such systems motion will have a separate form for in-contact and out-of-contact
dynamics. As an interacting system we select the Du�ng oscillator because it has nonlinear characteristic
and for chosen values of parameters it has two solutions. The coupling introduce additional nonlinearity and
increase number of coexisting solutions, which makes such system hard to analyze with classical methods.
Thus, considered system is excellent to introduce analysis based on basin stability method.

The paper is organized as follows: in Section 2 we introduce the model which is used to demonstrate the
main idea of our considerations, notations used to describe di�erent periodic states of the system and we
describe the applied methodology. In the next Section we present the analysis of the in�uence of di�erent
system parameters on response of the system. Finally, in Section 4 conclusions are presented.

2. Model of the system and its periodic solutions

In this section we introduce the model of two Du�ng oscillators interacting via discontinuous coupling.
Then, we present periodic solutions which exist in the system, their notation and the methodology of
calculations performed in this study.

2.1. Model of the system

The analyzed system is shown in Fig. 1. It consists of two Du�ng oscillators which, while at rest, are
separated by a distance d. Both oscillators have the same parameters: bodies of mass M are connected
to the wall by a viscous dampers with coe�cient c and non-linear springs of hardening type and sti�ness
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Fig. 1. Model of two Du�ng oscillators coupled discontinuously

coe�cients k1 > 0 and k2 > 0. The oscillators are driven by two harmonic forces with the same amplitude
and frequency (F and ω respectively), but with a phase shift between them. The �rst oscillator's forcing
has �xed phase equal to zero while the phase of second one is equal to ϕ and its vary in range ϕ ∈ [0, 2π).

Depending on the values of d and ϕ,impacts may occur between the two oscillators. These impacts are of
soft type, due to the presence of the spring and damper between the oscillators, with sti�ness and damping
coe�cient equal to kc and cc respectively.

The motion of both oscillators is described by the following equations of motion:

Mẍ1 + cẋ1 + k1x1 + k2x
3
1 + Fc = F sin(ωt),

Mẍ2 + cẋ2 + k1x2 + k2x
3
2 + Fc = F sin(ωt+ ϕ),

(1)

where Fc denotes the force resulting from discontinuous coupling of the systems, given by the piecewise
formula:

Fc =

{
0 for x1 − x2 < d,

kc((x1 − x2)− d) + cc(ẋ1 − ẋ2) for x1 − x2 ≥ d.
(2)

The values of the system parameters which remain constant in all simulations conducted in this paper are as
follows: M = 1.0 [kg], k1 = 1.0 [Nm ], k2 = 0.01 [ N

m3 ], c = 0.05 [Ns
m ], F = 1.0 [N ], ω = 1.3 [1s ]. Parameters d, ϕ,

kc and cc are control parameters, and are taken from ranges d ∈ [0, 22] [m], ϕ ∈ [0, 2π] [rad], kc ∈ [5, 20] [Nm ],

and cc ∈ [1, 11] [Ns
m ]. Values of the parameters do not directly correspond to real life values, we select them

to show the idea of classi�cation of solutions based on the basin stability method using simple model of
dynamical system. In order to transform the equations to dimensionless form, we introduce reference length
lr = 1.0 [m], mass mr = 1.0 [kg] and dimensionless time τ = tω1, where ω1 = 1.0 [1s ]. Having those values,

we can replace dimensional parameters with the following non-dimensional ones: M ′ = M
mr
, k′1 = k1lr

mrω2
1
,

k′2 = k2l2r
mrω2

1
, c′ = c

mrω1
, F ′ = F

mrlrω2
1
, ω′ = ω

ω1
, k′c =

kclr
mrω2

1
, c′c =

cc
mrω1

, d′ = d
lr
. For simplicity all primes will

be omitted in the analysis.

2.2. Periodic solutions

In this paper we show the continuation of our previous studies on the dynamics of presented system [Brzeski
et al., 2017a; Chávez et al., 2017]. Previously, we investigated periodic solutions and their bifurcations. We
found out that with decrease of the distance d between Du�ng systems the number of existing solutions is
reduced. Now, let us brie�y recall the results from the aforementioned papers to describe the dynamics of
considered system. The single Du�ng oscillator for selected parameter values has three periodic solutions
due to its hardening characteristic. Two of them are stable and one is unstable, hence we just focus on two
stable orbits with small and large amplitude respectively. When we consider two interacting systems there
are four possible states, i.e., the �rst and the second system are both on small (solution No. I) or large
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Fig. 2. Border lines of stability for non-impacting solutions in the (d, ϕ) plane (a). Each type of solution is drawn with line
of di�erent color. (M = 1.0, k1 = 1.0, k2 = 0.01, c = 0.05, F = 1.0, ω = 1.3).

(solution No. IV) amplitude attractors and the �rst is on small while the second on large solution (solution
No. II) and vice versa (solution No. III).

The current distance between the oscillators can be measured as x1 − x2 − d and it depends on the
relative position of each oscillator along the trajectory governed by the phase shift ϕ. Impact between the
two oscillators occurs when the distance x1−x2− d is zero, while in contact distance is negative. In Figure
2 two parameter plot is presented showing the boundaries below which given aforementioned four periodic
solutions without impacts exist. The boundary line of each solution is marked by di�erent color. Below the
red line on the graph Solution No. I is not possible despite the values of d and ϕ. Consequently, other lines
depict borders of existence of the remaining periodic solutions which disappear when d and ϕ are below the
lines (details of calculation of this diagram are presented in our previous paper [Brzeski et al., 2017a]). These
lines give only information about non-impacting periodic solutions but we have no data about solutions
with impacts. In this study we investigate this problem. We select three values of parameter d (5, 10.5 and
15) to investigate the dynamics of system for three signi�cantly di�erent states (number of non-impacting
solutions vary from one to four).

2.3. Extended basin stability method

The idea of extended basin stability method has been described in our previous papers [Brzeski et al., 2016,
2017b; Brzeski & Perlikowski, 2018]. It bases on basin stability method introduced by Menck et. al. [Menck
et al., 2013, 2014]. They proposed a powerful tool to estimate the size of complex basins of attraction
in multidimensional systems which in case of system with discontinuity is very useful. To determine the
structure of phase space we perform N number of Bernoulli trials of direct numerical integration. Hence,
we have to draw N sets initial conditions from assumed ranges of accessible initial conditions for �xed
parameters of the system (in all dynamical system we have limitation of accessible amplitude or velocity,
so we have to take those limits into account). Then, for each set of initial values we check the type of
�nal attractor. We integrate system with Runge-Kutta 4th order method with constant time step equal
to 5.0e−4[−] . To precisely detect moments of contact and separation (switching of system equations) we
monitor state of the system and close to both events we decrease the size of the time step ten times. Based
on this the percentage distribution of solutions is determined.

In [Brzeski et al., 2016; Brzeski & Perlikowski, 2018] we extend the above method with assuming that
parameters of the system are also drawn for each trial. This let us include in the algorithm uncertainties and
mismatches of parameters or investigate the system with varying parameters (e.g. frequency of excitation).
We can also use this method during design of system to �nd parameters ranges where its dynamics is most
suitable for given application.

General equation of motion of dynamical system can be written in following form: ẋ = f(x, γ), where
x ∈ Rn is state vector and γ ∈ Rm is parameters vector. Let B ⊂ Rn be a set of accessible initial conditions
and C ⊂ Rm a set of the system parameters values. Let us assume, that an attractorA exists for γ ∈ CA ⊂ C



August 13, 2019 20:18 IJBC2019

Sample-based method for detection and classi�cation of solutions in systems with impacts 5

p
ro

b
ab

il
it

y

(a)

sum of non-impacting

(b)

0.9

0.92

0.94

0.96

0.98

1

10 2 10 3 10 4

Number of Bernoulli trials

p
ro

b
ab

il
it

y

0.9

0.92

0.94

0.96

0.98

1

10 2 10 3 10 4

Number of Bernoulli trials

10 5

Fig. 3. Convergence of probability of reaching a non-impacting solutions for as a function of number of Bernoulli trials
(logarithmic scale) for d = 5. In panel (a) we show convergence for free phase ϕ (up to N = 200000 trials) and panel (b) for
�xed phase ϕ (up to N = 20000 trials).

and has a basin of attraction β(A). Assuming random initial conditions from the set B the probability that
the system will reach attractor A is given by p(A). If this probability is equal to p(A) = 1.0 this means
that the given solutions is the only one in the taken range of initial conditions and given values of the
parameters. Otherwise, other attractors coexist.

In this study, we focus on application of the proposed extended method to design the system behaving
in prescribed way, i.e, we want to avoid solutions with impacts by selecting parameters of the stop (kc, cc)
and phase shift (ϕ) for selected values of distance d between the two interacting Du�ng systems.

3. Results

In this section we show results obtained for system of two interacting Du�ng oscillators. We investigate
the probability of reaching periodic, non-impacting solutions as a function of system parameters and initial
conditions. We draw parameters of system from following ranges: cc ∈ [1, 11], kc ∈ [5, 20] and ϕ = [0, 2π)
(in one case we �x ϕ) and initial conditions (x1,2, ẋ1,2) are from range: [−12, 12] for three �xed values of
distance d. Generally, ranges of initial conditions should be select individually for each system to correspond
to maximum and minimum values reached be system trajectories or speci�c properties of system (constrains
on amplitude or/and velocity). We performN = 200000 Bernoulli trials in case when we draw all parameters
and N = 20000 Bernoulli trials for �xed phase shift ϕ. To validate that the assumed numbers of Bernoulli
trials are correct we performed convergence study. In Fig. 3 we show how probability of reaching non-
impacting solutions for distance d = 5 is varying as a function of trials numbers. In both �gures number
of Bernoulli trials is given in logarithmic scale. Panel (a) shows plot for up to N = 200000 trials (free
phase ϕ) and panel (b) for up to N = 20000 trials (�xed phase ϕ). In both cases we see the convergence of
probabilities, hence we claim that such choice of trials numbers is su�cient to obtain reliable results.

We show that extended basin stability method let us obtain the information about types of solutions in
the system. Moreover, it is an e�ective tool to predict dynamics of the analyzed strongly non-linear system.

3.1. In�uence of coupling parameters cc and kc on the presence of non-impacting

solutions for �xed ϕ

We start the analysis with study of in�uence of stop parameters (kc and cc) on the probability of presence of
non-impacting solutions. In the �rst case, to simplify analysis we �x the value of the phase shift to ϕ = 5.28.
Results are presented in Fig. 4 for three values of distance d between systems, i.e., d = 5 (Fig. 4(a)), d = 10.5
(Fig. 4(b)) and d = 15 (Fig. 4(c)). We divide the parameters space (kc, cc) into 225 equally spaced squares
and calculate the probability of reaching non-impacting periodic solutions (sum of probability of solutions
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Fig. 4. The probability of reaching a non-impacting solution with respect to values of the coupling parameters kc and cc
for �xed ϕ = 5.28 and d = 5 (a), d = 10.5 (b) and d = 15 (c). Calculations carried out for the following system parameters:
M = 1.0, k1 = 1.0, k2 = 0.01, c = 0.05, F = 1.0, ω = 1.3.

Nos I-IV) in each square. The maximum value is 1.0 which indicates that in given range we do not observe
solutions with impacts. As we can see in panel (a) the probability is varying from 0.79 to 0.99 and its mean
value is 0.90 so generally it is high, however it strongly vary between selected squares. When we increase
the distance to d = 10.5 we see that the minimum value of probability is equal to 0.89, maximum to 1.0
and mean to 0.96. Contrary to smaller distance between Du�ng system (subplot (a)), now we can identify
the large region with only non-impacting periodic solutions in upper left part of the diagram. We also
observe increase of the mean probability value. In the last panel we see that for all drawn values of system
parameters and initial conditions the system always reach periodic non-impacting solutions. Hence, we are
certain that we always achieve one of the non-impacting solutions (Nos I-IV).

3.2. In�uence of coupling parameters cc and kc and the phase shift ϕ on the

presence of non-impacting solutions

In this subsection we extend previous study with drawing also value of the phase shift ϕ. We present results
in Fig. 5(a-c) for the same values of distance d as in previous subsection. We also divide the parameters
space (kc, cc) into 225 equally spaced squares and calculate the probability of reaching non-impacting
periodic solutions (sum of probability of solutions Nos I-IV) in each square. Now, we see that changes of ϕ
in�uences dynamics of the system signi�cantly. In panel (a) the minimum value of probability is equal to
0.44, mean to 0.92 and maximum to 0.98, thus we see that random phase shift is decreasing minimum value
of probability but increase its mean value. In panel (b) for distance d = 10.5 we see decrease of probability
(minimum: 0.83, mean: 0.87 and maximum: 0.93). The probability is higher for larger values of kc and
smaller cc. For all values of kc the increase of damping cc causes drop down of probability. Moreover, we
do not have the range where impacting solution are not present. In the last case (panel (c), d = 15.0) the
values of probabilities are as follows: minimum: 0.92, mean: 0.97 and maximum: 0.99. Thus, the probability
is overall high and it increases with the increase of damping coe�cient cc. Generally, we see that one can
�nd ranges of high probability when all parameters and initial conditions are drawn, however we observe
signi�cant in�uence of variable phase shift. Hence, to achieve the range with probability equal to one we
have to �x the value of ϕ or draw it from smaller range then in this case.

3.3. In�uence of phase shift on the presence of non-impacting solutions

As we conclude in previous subsection phase shift is important parameter. Now, we focus on its in�uence
on probability of reaching non-impacting solutions. We take coupling parameters from ranges cc ∈ [1, 11]
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Fig. 5. The probability of reaching a non-impacting solution with respect to the coupling parameters kc and cc with varying
ϕ = [0, 2π) and d = 5 (a), d = 10.5 (b) and d = 15 (c). Calculations conducted for the following system parameters: M = 1.0,
k1 = 1.0, k2 = 0.01, c = 0.05, F = 1.0, ω = 1.3.

and kc ∈ [5, 20], hence we are able to determine ranges of phase shift ϕ = [0, 2π) where only non-impacting
solutions exist. Results are presented in Figure 6. Similarly to previous study we investigate three di�erent
values of distance between Du�ng oscillators: d = 5 (a), d = 10.5 (b) and d = 15 (c). We divide range
of ϕ into 32 equal sets. For each set we calculate the probability of reaching four non-impacting periodic
solutions (Nos I - IV) and additionally we plot their sum (see description in subsection 2.2). Probabilities
of solutions are marked with squares in the middle of each set with colors corresponding to given solution.
Lines connecting squares show tendency. Blue color squares indicate the sum of non-impacting solutions,
hence when probability reaches 1.0 it means that there are only non-impacting solutions. With the increase
of distance d the number of coexisting solutions also increases according to results shown in Figure 2.
There is no symmetry in the probability with respect to ϕ = π but for a such non-linear system it is not
surprising, because the second system is not a mirror refection of the �rst one due to phase shift ϕ. For
small value of distance d = 5.0 we see that only non-impacting orbits are present for range where two
solutions coexist (Nos I and IV). When solution No. IV destabilizes we see coexistence of solution No. I and
impacting attractors. For distance d = 10.5 according to Figure 2 we observe all non-impacting solutions
but they never all coexist for �xed phase shift .The sum of their probabilities of occurrence is equal 1.0
only close to ϕ = π. For panel (c) obtained for distance d = 15.0 we observe increase of the range where
the sum of probabilities is equal to unity. Nevertheless, for all three cases the probability of non-impacting
solutions strongly depends on the phase shift, hence we are not certain that with arbitrary, �xed values of
stop ( assumingcc ∈ [1, 11] and kc ∈ [5, 20]) and phase shift ϕ = [0, 2π) system will behave according to the
assumption (only non-impacting solutions). Thus, the conclusion from the previous subsection is con�rmed.

3.4. In�uence of initial conditions on the presence of non-impacting solutions

The results of in�uence of initial conditions are presented in Figure 7. In panels (a-c) we show the probability
of reaching periodic solutions as a function of initial displacements (x1 and x2) for three values of distance
equal to d = 5, d = 10.5 and d = 15 respectively. The red lines indicate the impact condition given by
Eq. (2), hence above this line Du�ng oscillators at initial state are in contact. While in panels (d-f), we
present the probability of reaching periodic solutions as a function of initial velocities (ẋ1 and ẋ2) for the
same values of distance d (d = 5, d = 10.5 and d = 15). The values of parameters (kc, cc and ϕ) and second
pair of initial conditions are random.

Let us start the analysis from the �rst row. In panel (a) we see that for majority of two parameters
range the probability is high and only in the small range in the top right corner the probability is rapidly



August 13, 2019 20:18 IJBC2019

8 Lazarek, Brzeski, Solecki, Perlikowski

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

0.2

π
2

3π
2 2πφ0 π

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

0.2

π
2

3π
2 2πφ0 π

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

il
it

y

0.2

π
2

3π
2 2πφ0 π

(a) (b) (c)

I sum of non-impacting

Fig. 6. The probability of reaching a non-impacting solution as a function of ϕ = [0, 2π) and d = 5.0 (a), d = 10.5 (b) and
d = 15.0 (c) for cc ∈ [1, 11] and kc ∈ [5, 20]. Calculations conducted for the following system parameters: M = 1.0, k1 = 1.0,
k2 = 0.01, c = 0.05, F = 1.0, ω = 1.3.

dropping down to minimum value equal to 0.54. If we exclude this low probability region the mean value
of probability is equal to 0.98. For d = 10.5 (panel (b)) we see signi�cant di�erence in comparison to the
previous plot. Probability is low for larger range of initial conditions values (mean value is equal to 0.86).
The higher probability occurs only close to minimum values of the �rst initial condition (x1 ≈ −12). Much
bigger probability values are obtained for the largest distance d = 15. Here, minimum value is equal to 0.87
and mean to 0.96. We see the large range of probability equal to 1.0 in center and for low values of the �rst
initial condition. Thus, in this range the in�uence of stop parameters, phase shift and initial velocities is
small.

Now, we focus on the in�uence of initial velocities. In panel (d) we see that the probability is varying
from 0.71 to 0.97 with mean value 0.93. We see that low and high probability ranges are sharply divided.
With the increase of the distance d we see that the range with low probability increases. Hence, we observe
that the mean value is also lower and equal to: 0.89. Similarly as for initial displacement, for distance d = 15
there is a wide range with probability equal to unity (the mean value is equal to 0.97 and minimum to
0.88). Thus, taking initial conditions from this range, we are certain that non-impacting solution is reached.

4. Conclusions

In this paper we show a method to analyze the dynamics of complex non-linear, non-smooth systems. We
use sample based approach originate from the extended basin stability method. As a random parameters
we take the parameters describing soft impacts between the two Du�ng oscillators. Namely, the sti�ness
of the spring and damping coe�cient of dash-pot. Apart from that we analyze the in�uence of the phase
shift of excitation of the second Du�ng oscillator. In the last part we also show the in�uence of four initial
conditions of the Du�ng systems.

Presented method can be utilized to better understand system dynamics or to analyze the occurrence of
some speci�c behavior of the system. In the paper we investigate the probability of reaching non-impacting,
periodic solutions, but one can select any goal of analysis, e.g, chaotic solutions, solutions with assumed
amplitude or other. We can also simulate the real-life uncertainty of the parameter values, variability of
parameters during operation or slow change of their values due to the fatigue of the device. Thus, we can
de�ne the ranges of the parameters space in which the considered system operates correctly and describe how
change in parameter values (and/or initial conditions) in�uence its behavior. We are able to estimate the
risk that the system will behave di�erently from the expected way. The proposed method is robust, and can
be utilized for a wide variety of engineering applications. Among them we can mention following examples of
multistable systems with impacts: vibro-impact drilling systems [Liu et al., 2018; Liao et al., 2018], cutting
machines [Yan et al., 2017], multilevel DC/DC converters [Zhusubaliyev et al., 2015], piecewise smooth
rotor/stator rubbing systems [Li et al., 2017], Filippov-type systems [Glendinning et al., 2016], systems
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Fig. 7. The probability of reaching a non-impacting solution as a function of initial conditions and d = 5.0 (a), d = 10.5 (b)
and d = 15.0 (c) for of ϕ = [0, 2π), cc ∈ [1, 11] and kc ∈ [5, 20]. The calculations were conducted for the following system
parameters: M = 1.0, k1 = 1.0, k2 = 0.01, c = 0.05, F = 1.0, ω = 1.3.

with a frictional unilateral constraint [Lancioni et al., 2009].
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