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a b s t r a c t

In this paper we investigate the dynamics of tuned mass absorber with additional viscous damper and
inerter attached to the pendulum. The devices are used to damp out oscillations of non-linear Duffing
oscillator. Analysis of how these devices influence the dynamics of tuned mass absorber and its damping
properties is shown. We calculate the detailed bifurcation diagrams and show how by changing the
parameters of damper and inerter one can eliminate dangerous dynamic instabilities from the systems.
Finally, in the last section we present an optimization of TMA's parameters in order to achieve best
efficiency in damping of the main body vibrations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The effective damping of mechanical and structural systems
oscillations has always been a big challenge for engineers. One of
the first attempts to absorb energy of vibrations and in conse-
quence reduce the amplitude of motion is a tuned mass damper
(TMD) introduced by Frahm [1]. The device consists of mass on
linear spring such that its natural frequency is identical with the
natural frequency of damped system. As it is well known, classic
TMD is extremely effective in reducing response of the main
structure in its resonance but for other frequencies (even close
to this resonant frequency) it increases the amplitude of the
system's motion.

Modification of TMD has been presented in the work of Den
Hartog [2]. The author proposes the addition of the viscous damper
to Frahm's system design. Thanks to introduced damping TMD
become a powerful device that can reduce vibrations of the main
body in a wide range of excitation frequencies around principal
resonance. Another modification that can lead to broaden the range
of TMD effectiveness has been proposed by Roberstson [3] and
Arnold [4], who interchange linear spring of the TMD by the non-
linear one (with linear and non-linear parts of stiffness). In recent
years much more attention has been paid to the possibility of using
purely non-linear springs [5–7]. Authors show that systems with
such springs have no main resonant frequency, hence the TMD
works in a wide range of excitation frequencies.

One can find many successful applications of TMDs which are used
to prevent damage of buildings due to seismic excitation [8,9],
suppress vibration of tall buildings subjected to wind [10,11], achieve
the best properties of cutting processes [12,13], decrease vibration of
floors or balconies [14,15], reach stable rotations of rotors [16–18],
stabilize drilling strings [19] and many others.

Another important contribution into subject of vibrations absorp-
tion is an introduction of the device called a tuned mass absorber
(TMA) proposed by Hatwal et al. [20–22] who interchange the linear/
non-linear oscillator by the pendulum. In case of pendulum the
natural frequency depends only on its length, so TMA it much easier
to tune in practical applications. Moreover, the disadvantage of TMD is
that it works only along its mounting direction. This drawback is not
present for the TMA because pendulum can oscillate regardless of the
direction of base structure motion (in horizontal case pendulum
oscillates for any excitation frequency while for vertical orientation
only in its parametric resonances). The dynamics of the TMA with
vertical forcing of base oscillator is considered in a few papers [21–31].
Presented analysis allows to understand the dynamics and response of
the main structures around primary and secondary resonances of the
pendulum. The complete bifurcation analysis of the TMA applied to
vertically forced Duffing oscillator in two parameters space (amplitude
and frequency of excitation) is presented in [32]. The similar analysis is
also performed for systems with horizontally forced main masses
[33–36].

In our previous paper [37] we show the detailed analysis of
TMA with additional damper in the pivot of pendulum. We show
that properly chosen value of pendulum's damping coefficient can
strongly decrease the amplitude of Duffing oscillator around
primary resonance and broaden the range of TMA effectiveness.
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We also present optimization scheme that can be used to determine
optimum values of damping parameters. In this paper we develop this
idea and consider systemwith not only additional damper but also the
inerter. The inerter is a two terminal element which has the property
that force generated at its ends is proportional to the relative
acceleration between them [38]. Smith proposed to use an inerter in
suspensions of cars. He has shown that oscillations induced by road
imperfections and load disturbances can be reduced more effectively
using suspensions with inerters. In his further work [39] he has
studied several simple passive suspension struts, each containing at
most one damper and inerter. The theoretical results are confirmed by
experiment showing that suspension layouts with inerter are more
effective than classical designs with damper and springs only. In 2005
the inerter has been profitably used as a part of suspension in Formula
1 racing car [40]. Wang and Su [41] present how the performance of
suspension is influenced by non-linearities which appear due to the
inerter construction including effects caused by friction, backlash and
elasticity. They show that the performance benefits are slightly
degraded by the inerter non-linearities but still the overall perfor-
mance of suspension with a non-linear inerter is better than tradi-
tional suspensions, especially when the stiffness of suspension is large.
As one can expect successful application of an inerter in car suspen-
sion resulted in a number of studies on other possible applications of
inerters. Takewaki et al. examine [42] if the advantages of inerter can
be beneficial in devices protecting buildings from earthquakes. The
authors present detailed study showing how allocation of damping
device with inerter on each storey (from first to twelve storey)
influences the response of the building. In a recent paper [43] authors
study the influence of inerter on the natural frequencies of vibration
systems. They propose different constructional solutions of one and
two degree-of-freedom systems and present how inerters influence
their dynamics.

This paper is organized as follows: Section 2 contains descrip-
tion of the considered model of the system. Section 3 is divided
into three parts. In the first part we show the influence of
additional viscous damper on performance of TMA, the second
part is devoted to influence of inerter and in the last one we
compare how these devices affect the dynamics of the system.
Finally, in Section 4, we consider the dynamics of the system
under the presence of both damper and inerter and use optimiza-
tion procedure to obtain the optimal values of additional devices
parameters which ensure the best damping properties. We sum-
marize our results in Section 5.

2. Model of the system

We consider a horizontally forced single-well Duffing oscil-
lator with attached T-shaped pendulum (Fig. 1(a)). Additional

devices – damper and inerter are mounted onto the base structure
and attached to the ends of the arms of the T-shaped pendulum.
The motion of the system is characterized by following generalized
coordinates: the horizontal displacement of Duffing oscillator is
described by coordinate x and the angular displacement of
pendulum is given by angle φ. The notation of systems' para-
meters is as follows: M is mass of Duffing oscillator, m and l
correspond to mass and length of pendulum's rod, la is the length
of the massless cross arms of T-shaped pendulum, k1 and k2 are
linear and non-linear parts of spring stiffness. The viscous damp-
ing coefficient of Duffing oscillator is given by c and the viscous
damping in the pivot point of the pendulum by cP. Inertance of the
inerter connected to the pendulum is given by parameter In while
cA is damping coefficient of additional viscous damper.

In Fig. 1(b) we present considered system with deflected
pendulum. In order to derive the equations of motion we have
to calculate the generated forces in the additional devices with the
change of angular position of the pendulum φ. The change in the
length of additional damper Δldamper can be calculated as follows:

Δldamper ¼ � la sinφ
cosαd

; ð1Þ

where la is the length of the pendulum's arm and αd is an angle by
which the damper is deflected from the vertical position. To
calculate the change in the length of inerter Δlinerter the following
formula can be used

Δlinerter ¼
la sinφ
cosαi

; ð2Þ

where αi is an angle by which the inerter is deflected from the
vertical position. As discussed in Appendix A the system can be
designed to ensure that αd51 and αi51 which enables us to
simplify Eqs. (1) and (2):

Δldamper ¼ � la sinφ; ð3Þ

Δlinerter ¼ la sinφ; ð4Þ

hence:

Δ_ldamper ¼ � la _φ cosφ Δ€ldamper ¼ � la €φ cosφþ la _φ2 sinφ; ð5Þ

Δ_linerter ¼ la _φ cosφ Δ€linerter ¼ la €φ cosφ� la _φ2 sinφ: ð6Þ

Using the above calculated velocities we can derive the following
formula for the kinetic energy T, potential energy V, Rayleigh
dissipation D and general forces Q for the considered system:

T ¼ 1
2
ðMþmÞ _x2þ1

6
ml2 _φ2þ1

2
ml _x _φ cosφþ1

2
InðΔ_linerterÞ2 ð7Þ
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l
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F ( t)cos ω
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Fig. 1. Model of the system (a) and orientation of forces generated by additional devices (b).
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V ¼ 1
2
k1x2þ

1
4
k2x4�

1
2
mlg cosφ ð8Þ

D¼ 1
2
c _x2þ1

2
cAðΔ_ldamperÞ2 ð9Þ

Q ¼ Tð _φÞ∂φ
∂φ

ð10Þ

where Tð _φÞ ¼ cP _φ is a damping momentum in the pivot point of
the pendulum. Using Lagrange equations off the second type we
get the equations of motion:

ðMþmÞ €xþ1
2
ml €φ cosφ� _φ2 sinφ

h i
þk1xþk2x3þc _x ¼ F cos ðωtÞ

ð11Þ

1
2
ml €x cosφþ 1

3
ml2þ Inl

2
a cos

2φ
� �

€φþ1
2
mlg sinφ

þðcPþcAl
2
a cos

2φÞ _φ� Inl
2
a _φ

2 cosφ sinφ¼ 0 ð12Þ

Introducing dimensionless time τ¼ tω1, where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=M

p
is the

linear approximation of natural frequency of Duffing oscillator we
obtain dimensionless equations:

ð1þmDÞ ~x″þ
1
2
mDlD φ″ cosφ�ðφ0Þ2 sinφ

h i
þ ~xþk2D ~x

3þcD ~x
0 ¼ FD cos ð ~ωτÞ

ð13Þ

1
2
mDlD ~x

″ cosφþ 1
3
mDl

2
Dþ InDl

2
aD cos

2φ
� �

φ″þ1
2
mDlDgD sinφ

þðcPDþcADl
2
aD cos

2φÞφ0 � InDl
2
aDðφ0Þ2 cosφ sinφ¼ 0

ð14Þ

where prime denotes the differentiation with respect to non-
dimensional time τ, ~x ¼ x=l0, ~x 0 ¼ _x=l0ω1, ~x″¼ €x=l0ω2

1, φ
0 ¼ _φ=ω1,

φ″¼ €φ=ω2
1, (for simplicity tildes in dimensionless equations

will henceforth be omitted) k2D ¼ k2l
2
0=Mω2

1, cD ¼ c=Mω1,
cPD ¼ cP=Ml20ω1, cAD ¼ cA=Mω1, InD ¼ In=M, lD ¼ l=l0, laD ¼ la=l0,
mD ¼m=M, gD ¼ g=l0ω2

1, FD ¼ F=Ml0ω2
1, ~ω ¼ω=ω1.

We take initial parameters values from our previous paper [37]
which are as follows: M ¼ 3:63 ½kg�, k1 ¼ 660 ½N=m�, k2 ¼ 200 ½N=m�,
c¼ 0:240 ½Ns=m�, cP ¼ 1:977 ½Nms�, l¼ 0:0779 ½m�, la ¼ 0:01 ½m�,
m¼ 0:363 ½kg�, F ¼ 0:33 ½N�. Values of parameters cAD and InD which
are used to describe the additional damper and inerter respectively
will be changed during numerical simulations in order to show how
these supplementary devices influence the efficiency of the TMA and
the dynamics of the considered system.

Using reference length l0 ¼ 1:0 ½m� we perform transformation to
dimensionless parameters (depicted by letter D) in a way that allows
to hold accessibility to physical parameters receiving: k2D ¼ 0:30303,
cD ¼ 0:0049, cPD ¼ 4:04� 10�2, lD ¼ 0:0779, laD ¼ 0:01, mD ¼ 0:1,
gD ¼ 0:053955, FD ¼ 0:0005.

3. Numerical results

3.1. Influence of additional damper on the response of the Duffing
oscillator

In our previous paper [37] we have investigated the dynamics
of the horizontally forced Duffing oscillator with suspended TMAs
of three different types, i.e., classical single pendulum, dual
pendulum and pendulum-spring. We have shown how different
parameters of TMAs affect the behavior of the system and then
proposed an optimization method which can be used to adjust the
absorbers parameters to obtain the best damping properties in a
wide range of excitation frequencies. One of the main conclusions
drawn from the analysis of single pendulum TMA is that damping
coefficient in the pivot point of the pendulum has a decisive
influence on the device efficiency. When damping coefficient is too
small one can observe the decrease of Duffing oscillator amplitude
only around principal resonance and when it is too big, TMA
barely changes the response of the base structure. In real world
applications it can be difficult to ensure specifically identified
value of viscous damping coefficient in the pivot point of the
pendulum. Therefore, in this paper we propose the modification of
the pendulum's design (by introducing T-shaped pendulum) that
allows the attachment of oil viscous damper or a magnetorheolo-
gical damper. Thus, total damping of the pendulum consists of two
components: damping in the pivot point described by parameter
cPD ¼ 4:04� 10�2 which is equivalent to 1% of critical damping of
the pendulum and damping introduced by additional damper
described by parameter cAD. In this case the total damping of the
pendulum can be easily controlled. To show dynamics of Duffing
system under the presence of additional damper in detail we
present how frequency response curve (FRC) changes for increas-
ing value of cAD. To obtain the FRC we use the Auto 07p [44]
continuation toolbox. In Fig. 2(a) we present FRCs calculated for
the system without additional damper (in this case we consider
only damping in the pivot point) and for the system with
additional viscous damper characterized by parameter
cPD ¼ 5:5� 10�2. In both cases we assume that there is no inerter
attached to the arm of the pendulum (InD ¼ 0).
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Fig. 2. FRCs of the base structure calculated for the system without inerter (InD ¼ 0): with no additional damper cAD ¼ 0, (continuous line) and with additional damper
cAD ¼ 5:5� 10�2 (dashed line) showing how the increase of pendulum's total damping coefficient influences the response of the base structure. Subplots (b,c) are
magnifications of FRC curve presented in subplot (a). The stability of solutions is depicted by color of lines: black color corresponds to stable and red color to unstable
solutions. The damping in pivot of pendulum is present for both cases. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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Along the solid line presented in Fig. 2(a) that corres-
ponds to the system without additional damper one can see the
following bifurcations: forω¼ 0:867907,ω¼ 0:861789,ω¼ 1:11276,
ω¼ 0:980540 saddle-node bifurcations occur, for ω¼ 0:863156,
ω¼ 0:868125 Neimark–Sacker bifurcations appear and for ω¼
0:983657, ω¼ 0:9865495 symmetry breaking pitchfork bifurcations
occur. The two asymmetric solutions created in pitchfork bifurcation
lose their stability in a period doubling bifurcations that occur for
ω¼ 0:980868,ω¼ 0:981021. Bifurcations described above give rise to
the coexistence of different attractors which can be observed in awide
range of excitation frequency ω. Therefore, the dynamics of the
considered system without additional damper is complicated and
such a design is inconvenient for practical applications. Dashed line
presented in Fig. 2(a) is calculated for the system with additional
damper characterized by parameter cAD ¼ 5:5� 10�2. Due to the
presence of supplementary damper, total damping coefficient of the
pendulum rises causing the decrease of Duffing amplitude and
elimination of all bifurcations. To present how the position of each
bifurcation on the FRC changes with increase of the damping
coefficient of additional damper, we calculated two parameters
bifurcation diagram (ω, cAD) presented in Fig. 3. Analyzing bifurcation
curves presented in Fig. 3 one can see that Neimark–Sacker bifurca-
tions disappear if cAD40:656� 10�2 (which corresponds to about
0.16% of critical damping), and symmetry breaking bifurcations vanish
for cAD41:214� 10�2 (0.3% of critical damping). Therefore if damp-
ing coefficient of additional damper is greater than 0.3% of critical
damping one will observe only symmetric periodic solutions of the
system. To eliminate all bifurcations and receive FRC without any
coexistence of attractors one has to ensure that cAD45:196� 10�2

meaning that additional damper damping coefficient is greater than
1.29% of critical damping. All above values are relatively small. More-
over, as we proved in our previous publication [37] for system with
given parameters best damping efficiency of TMA can be achieved if
total damping coefficient of the pendulum is equal to about 18% of
critical damping. Therefore if additional damper damping coefficient is
close to the optimal value it will be effective with both suppressing the
system's response as well as elimination of dangerous dynamical
phenomena. We do not show period doubling bifurcations of asym-
metric solutions because they disappear simultaneously with pitchfork
bifurcations.

3.2. Influence of the inerter on the response of the Duffing oscillator

As we mentioned before, there are no previous studies on
application of inerter in TMA. Hence, the influence of the inerter

on damping properties of TMAs needs to be carefully examined.
Similar to previous paragraph, to show how the dynamics of Duffing
system changes under the presence of inerter, FRCs are used. Such
approach enables accurate description of how the value of additional
inertance attached to the T-shaped pendulum (InD) affects dynamical
response of the system and damping properties of TMA. In Fig. 4
(a) we show two FRCs, solid line corresponds to the system without
the inerter, and dashed one to system with additional inerter
described by dimensionless parameter InD ¼ 22:5. In both cases we
assume that there is no additional damper (cAD ¼ 0) therefore
damping is present only in the pivot of the pendulum and it is equal
to 1% of critical damping (cPD ¼ 4:04� 10�2). Black line presented in
Fig. 4(a) is identical to the one presented in Fig. 2(a) and should be
used as a reference. Analysis of dashed FRC presented in Fig. 4
(a) proves that by addition of the inerter one can eliminate all
bifurcations that occur along the FRC of base structure. Simulta-
neously, we see that the influences of inerter and additional damper
on the systems dynamics is different.

Two parameters bifurcation diagram (ω, InD) shown on Fig. 5
details the influence of the additional inertance on position of each
bifurcation along the FRC. For the system without inerter – regardless
of total pendulum damping coefficient – all bifurcations occur in the
range ωAð0:85; 1:15Þ: Addition of inerter causes the shift in the
bifurcations position towards the smaller values of forcing frequency.
Therefore, the range of parameterω for which we can observe saddle-
node bifurcations rapidly moves towards smaller values of ω. Analyz-
ing bifurcation curves shown in Fig. 5 one can see that Neimark–
Sacker bifurcations disappear if InD40:143, and symmetry breaking
bifurcations vanish for InD41:436. This means that even for the
systemwithout additional damper we can eliminate non-periodic and
non-symmetric solutions by the introduction of the inerter. Unfortu-
nately, the elimination of all bifurcations requires relatively high
inertance values, and it can be achieved for InD420 which means
that inerter has 20 times bigger inertia than the Duffing oscillator.
Such device can be easily constructed by the use of multi-stage gear
unit but it would completely mitigate pendulum's motion and
eliminate the damping properties of TMA (see FRC calculated for
InD ¼ 22:5 presented in Fig. 4(a)). However, it is important to notice
that the range of coexistence of different solutions caused by saddle-
node bifurcations is extremely small if InD44.

3.3. Comparison of the inerter and the damper influences

In Sections 3.1 and 3.2 we presented how the damper and the
inerter influence the dynamical response of the Duffing oscillator.

0
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ω
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Symmetry breaking bifurcation
Neimark-Sacker bifurcation

Saddle-node bifurcation

Fig. 3. Two parameters bifurcation diagram (ω and cAD) showing how the value of additional damper damping coefficient affects the position of bifurcation points on the
FRCs. The damping in pivot of pendulum is present.
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In this section we compare the effects caused by these devices.
Results presented in Figs. 3 and 5 can be used to correlate how
additional damper and inerter change the response of base
structure by shifting the position of the bifurcations. In both
Figs. 3 and 5 bottom horizontal line of the graph refers to lack of
these devices (cAD ¼ 0, InD ¼ 0). The FRC for such case is presented
both in Figs. 2(a) and 4(a) and is used as a reference line. When we
introduce the additional damper to the system, we see that even if
its damping coefficient is relatively small it is easy to eliminate all
bifurcations. If we want to use only an inerter to eliminate all
bifurcations it should have comparatively high inertance value.
Despite the value of parameter cAD all bifurcations occur in range
ωA ð0:85; 1:15Þ but the increase of inertance parameter InD leads
to extension of this range towards smaller values of forcing
frequency (ωAð0:31; 1:12Þ). When the damping coefficient rises
we initially observe rejection of bifurcations that occur around first
resonance peak (ω� 0:87). If cAD42� 10�2 we observe only
saddle-node bifurcations (two or four) around second resonance
peak (ω� 0:87). Contrary, with increase of additional inertance we
firstly observe elimination of bifurcations that occur around
second resonance peak. Two saddle-node bifurcations endure up
to InD ¼ 20 but distance between them is extremely small and with
the increase of InD their position shifts towards smaller values of ω
(up to ω¼ 0:3).

To further analyze the difference between the effects that are
caused by inerter and damper we calculated six FRCs of considered

system that are presented in Fig. 6. Three of them correspond to
the system with different inerters attached only, and other three
shows the response of the system in a presence of different
additional dampers only. In the upper row we show the response
of Duffing oscillator, while in the lower row the maximum
amplitude of pendulum versus frequency of excitation ω.

First two subplots of Fig. 6 presents the changes in the dynamic
response of Duffing oscillator. Analyzing Fig. 6(a) one can say that
increase of additional inertance leads to the following effects: first
resonance peak becomes much smaller while second one is slowly
rising. Both peaks occur for the smaller ω as InD increases. If we
substitute inerter with damper (see Fig. 6(b)) and increase damping
coefficient we notice that two resonance peaks merge into one that
arise around ω¼ 0:95. But the most essential effect of total
damping coefficient increase is the significant reduction of the
peak height which cannot be observed in system with inerter only.
Hence, while inerters can be used for elimination of bifurcations,
they do not affect damping properties positively. Subplots (c,d) in
Fig. 6 refer to the response of the pendulum. Analysis of Fig. 6
(d) leads to conclusion that by addition of damper which is attached
to the arm of T-shaped pendulumwe can easily decrease its motion
amplitude in a wide range of forcing frequencies. Moreover, this
effect is present even for relatively small damping coefficients (see
dashed curve presented in Fig. 6(d) calculated for cAD ¼ 0:404 which
corresponds to 10% of critical damping). If we want to suppress
pendulum's motion with comparable effectiveness we have to use
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Fig. 5. Two parameters bifurcation diagram (ω and InD) showing how the value of additional inertance affects the position of bifurcation points on the FRCs. The damping in
pivot of pendulum is present.
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inerter with comparatively high inertance (see dotted line pre-
sented in Fig. 6(c) calculated for InD ¼ 22:5). Otherwise, with the
increase of parameter InD we observe slow reduction in peaks
height and their migration toward smaller forcing frequencies.

4. Optimization of additional devices parameters

Up to this moment we considered systems with only one
additional device (damper or inerter). Such approach allow us to
compare the effects caused by both devices and to emphasize
differences between their influence on systems dynamics. We
claim that a combination of both inerter and additional damper
can lead to boost in TMA's damping efficiency. In this section we
validate this assumption and present how the response of base
structure changes for different values of parameters InD and cAD.

In order to visualize the behavior of the system with both
inerter and additional damper in Fig. 7(a,b,e,f) we present three
dimensional plots created as a surfaces based on the FRCs of the
system. To give better overview of the Duffing system amplitude
we also present two dimensional maps which are flat projections
of three dimensional surfaces presented in subplots (c,d,g,h) of
Fig. 7. For each plot we assume different additional damper
coefficient and present how inertance value influences response
of Duffing oscillator changing InD from 0 to 1. In this section we
confine considered range of InD because TMA damping efficiency
deteriorate for higher values of InD. Plots (a,c) were calculated for
cAD ¼ 0:202 which equals to 5% of critical damping, plots (b,d) for
cAD ¼ 0:404 which stands for 10% of pendulum critical damping,
subplots (e,g) represent the response of the system for cAD ¼ 0:808
(20% of critical damping) and (f,h) for cAD ¼ 1:212 (30% of critical
damping). Analyzing Fig. 7 one can say that for every considered
value of damping coefficient one can achieve the decrease of
Duffing oscillator amplitude by addition of proper inerter. This

effect is highly visible for smaller values of cAD when the addition
of inerter helps to improve TMA's efficiency significantly for a wide
range of ω.

Analyzing the results obtained for cAD ¼ 0:202 (Fig. 7(a,c)) we
see that for system without inerter first resonance peak which
occurs around ω¼ 0:85 is dominant. If we introduce inerter and
increase parameter InD we see that the height of first resonance
peak decreases while second resonance peak is growing and
becomes dominant for InD40:5. Similar phenomena can be
observed for the system with increased additional damping
coefficient cAD ¼ 0:404 (Fig. 7(a,c)). The only difference is that
because total damping coefficient of the pendulum is closer to
optimal value both resonance peaks are smaller and less slender.
If we increase additional damper damping coefficient up to 20% of
critical damping (cAD ¼ 0:808) we observe only one resonance
peak (Fig. 7(e,g)). For the system without inerter, it occurs around
ω¼ 0:9. If we introduce inerter and increase supplementary
inertance InD, we also observe migration of the peak's position
towards higher values of excitation frequencies. Decrease in the
amplitude of base structure can be observed for InD � 0:5 but it is
not so significant as for smaller values of cAD. Effects caused by an
inerter are similar to cAD ¼ 1:212 (Fig. 7(f,h)) but for this case
improvement in damping efficiency is barely visible. Therefore, if
total damping coefficient of the pendulum is relatively large (in
our case greater than 30% of critical damping) it suppress pendu-
lum's vibrations so much that inerter's influence on its dynamics is
barely visible.

Comparing results obtained for damping coefficients equal to
10% and 20% of critical damping, we see that comparable damping
efficiency can be achieved for different composition of parameters
cAD and InD. Still, by changing the configuration of different
dampers and inerters, we can better adjust the shape of FRC to
our expectations. Moreover, in many cases inerters can be easier
and more convenient to apply precise inertance value.
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5. Conclusions

In this paper we examine how additional devices attached to
the T-shaped pendulum TMA influences the dynamical response of
base structure. In the beginning we propose change in the
pendulum's shape and analyze its consequences. Introduction of
the T-shaped pendulum enables easier control of total damping
coefficient of the pendulum and allows the addition of other
supplementary devices that can modify the response of the
system. Simultaneously, changes in the TMA design can be con-
ducted in a way that would not cause undue complexity of the
model. Therefore, we claim that proper modification of pendu-
lum's shape can significantly facilitate process of adjusting TMA
performance to required level.

In Section 3 we investigated how additional damping and
inertance introduced by supplementary devices influence the
system dynamics and compare the effects caused by additional
damper and inerter. Addition of both components can lead to
elimination of bifurcations that occur for the systemwithout them.
In the considered case, if we do not want to observe any
bifurcations we should add damper with damping coefficient
corresponding to 1.29% or more of critical damping or an inerter
with 20 or more times bigger inertia than Duffing oscillator.
Therefore, dampers are much more effective in canceling
unwanted bifurcations. Moreover, addition of proper damper leads
to increase of TMA's damping efficiency in a wide range of
excitation frequencies while inerter can cause only slightly
decrease of base structure amplitude. Simultaneously, combina-
tion of these two devices can lead to significant improvement of
damping properties and enables much better control on the shape
of FRCs. Therefore we can precisely adjust the response of
considered structure to our expectations by selecting the right
configuration of damper and inerter. In Section 4 we picked four
different additional dampers and – for each – presented how the
change of the inertance value influences response of Duffing
oscillator. For every considered value of damping coefficient,
decrease of the Duffing oscillator amplitude can be achieved by
addition of a proper inerter. In the considered system, introduction
of the inerter which has around half of Duffing oscillator inertia
provides best damping properties despite the value of damping
coefficient. Considering the fact that it is easier to obtain constant
and precise value of inertance than damping coefficient, in many
cases the combination of inerter and damper can be much more
convenient to apply and enables better control of systems
dynamics.

Acknowledgment

This work has been supported by Young Scientists Fund of
Faculty of Mechanical Engineering at the Lodz University of Lodz.

Appendix A

In this section we consider the geometry of the system in detail
as shown in Fig. 8.

To calculate forces generated by additional damper and inerter
that are coupled to the arms of T-shaped pendulum we have to
know the actual deformations of the devices. In order to derive
formulas that describes how lengths of the devices change with
the change in deflection of the pendulum we have to use
geometrical measures of the system which are presented in
Fig. 8. The angular displacements of pendulum are given by angle
φ, the length of the arms of T-shaped pendulum is given by la,
initial lengths of both devices are the same and described by

parameter ld. Actual length of expanding device will be described
by l1 and angle of its inclination by α1. For contracting device we
will use l2, and α2 respectively. Actual lengths of the devices are
given by the following formulas:

l1 ¼
ld

cosα1
þ la sinφ

cosα1
ð15Þ

l2 ¼
ld

cosα2
� la sinφ

cosα2
ð16Þ

Hence

l1 cosα1 ¼ ldþ la sinφ ð17Þ

l2 cosα2 ¼ ld� la sinφ ð18Þ
Therefore we can get the following formulas:

α1 ¼ arccos
ldþ la sinφ

l1

� �
ð19Þ

α2 ¼ arccos
ld� la sinφ

l2

� �
ð20Þ

To describe how design of the system influences the maximum
values of angles α1 and α2 we introduce the following ratio:

lratio ¼
ld
la

ð21Þ

Next we can determine actual lengths of the devices with the
following formulas:

l1 ¼ la
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ l2ratio�2 cosφþ2lratio sinφ

q
ð22Þ

l2 ¼ la
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ l2ratio�2 cosφ�2lratio sinφ

q
ð23Þ

Substituting formulas (22), (23) (into 19) and (20) we obtain

α1 ¼ arccos
lratioþ sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ l2ratio�2 cosφþ2lratio sinφ
q

0
B@

1
CA ð24Þ

α2 ¼ arccos
lratio� sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ l2ratio�2 cosφ�2lratio sinφ
q

0
B@

1
CA ð25Þ

In this paper we assume that in the described system, the
angular displacement of pendulum is never greater than π=2
(φrπ=2). Therefore in our case the maximum values of angles
α1 and α2 can be observed for φ¼ π=2. In Fig. 9(a) we present how

Fig. 8. Geometric measures that are used to describe actual lengths of devices.
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maximum values of angles α1 and α2 changes with the change of
lratio when φ¼ π=2.

During optimization procedures we change value of inertance
and damping coefficient of additional damper. Both of these
devices cause a decrease in the amplitude of pendulum's motion.
For chosen amplitude of excitation if damping coefficient is larger
than 2% of critical damping, we do not observe angular deflections
of pendulum greater than π=4 (φoπ=4). Hence in Fig. 9(b) we
present how lratio influences the maximum values of angles α1 and
α2 when φ¼ π=4. One can see that for lratio44 both α1 and α2 are
always smaller than 51.

Analyzing formulas (24) and (25), one can see that values of
angles α1 and α2 depend on two values: lratio which is constant and
determined by the design of the system and angular displacement
of the pendulum given by coordinate φ. In Fig. 10 we show how
angle of pendulum's inclination influences angles α1 and α2 for
four different values of lratio (lratio ¼ 2, lratio ¼ 4, lratio ¼ 6, lratio ¼ 10).

In our analysis we assume that lratio ¼ 6, therefore α1 and α2 can
be treated as small angles. Due to this assumption we can
introduce the following simplifications:

αi51
sinαiCαi cosαiC1
sin ðφ7αiÞC sinφ cos ðφ7αiÞC cosφ

for i¼ 1;2 ð26Þ
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