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Abstract

In this paper we show the design of a novel tuned mass damper with inerter that enables changes of inertance.
We present the details of the experimental rig that is used to test the prototype device and provide technical
documentation of its crucial elements. The mathematical model of the system is derived based on the
Lagrange equations of the second type. We identify the parameters of the system: masses, sti�nesses
of springs and damping coe�cients. We pay special attention to identi�cation of energy dissipation model
composed of viscous damping and Coulomb damping. We use two step procedure to �nd the proper values of
damping coe�cients with high precision. To validate the model we compare the numerical and experimental
time traces. Good matching of the results prove well-posedness of the model and con�rm the obtained
parameter values.
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1. Introduction

The mitigation of structural vibrations is now a strongly developed area of engineering. The classical
tuned mass dampers (TMD) are well known and widely used. However, their e�ciency can be increased by
modi�cations of the design. One of the promising ideas is to add an inerter to the TMD. Inerter has been
proposed by Malcolm Smith [27] in 2002. It is a two terminal device in which force is proportional to the
relative acceleration of its ends. There are two most common realizations of the inerter. The �rst one is a
mechanical device where the linear motion is changed into rotations of the �ywheel via mechanical gear and
the energy is transferred into rotations of the �ywheel [12, 28]. In the second realization the mechanical gear
is substituted with a hydraulic device [30]. There are multiple signi�cant applications of inerters, which are
used to absorb impact forces [10, 25] or protect buildings from earthquakes [31, 9]. In [8] authors study the
in�uence of the inerter on the natural frequency of system's vibrations. The in�uence of di�erent types of
inerter' nonlinearities (viscous damping, dry friction and play in the inerter gears) has been studied in our
previous paper [5]. We show that in many cases, the simpli�ed model of the device enables to obtain results
with satisfactory precision.

When designing a mechanical or a structural system one can predict the approximate values of system
parameters. The mass and the sti�ness are relatively easy to validate. The challenging task is usually to
�nd the proper model of the energy dissipation [20, 22, 1, 17]. We assume that in the considered system the
dissipation occurs via viscous damping and dry friction. Feeny and Liang [11, 13] presented the method to
extract the viscous damping coe�cient and dry friction force from free oscillations. They show that for linear
system one can analytically calculate the fraction of viscous damping and dry friction force in overall energy
dissipation. In [14] the estimation of both parameters has been performed using the response of the forced
system using the energy balance method. Both methods are e�cient for analysis of linear systems which
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oscillate harmonically. However, most experiments reveal some divergence from harmonic motion which
is caused by non-harmonic excitation, non-linearity of springs and dampers, bearings jamming and many
more. Hence, based on the analytical method we can only estimate parameter values to use them as the
�rst guess for more sophisticated identi�cation methods. There are many methods for system identi�cation
[15, 16, 19], but the gray box [21] and the black box [26, 24] modelling are most popular. If one knows the
mathematical model of analyzed system the gray box model enables to estimate the values of parameters.
However, if we do not have the equations of motion we have to use the black box model to �nd the proper
formulas and parameter values.

In [3] we propose the concept of the new TMD design with inerter that enables changes of inertance and
in [4] we give the experimental proof of concept. The main advantage of the proposed device is the possibility
to tune the natural frequency of the TMD to the current frequency of the excitation. This feature is obtained
by implementing the continuously variable transmission (CVT) to the inerter. CVTs become widely use as
an alternative for gear transmissions in vehicles powertrains increasing performance and power economy
[29]. Hence its design and e�ciency has been studied [7]. Further analisys cocnerns heat transfer [32] and
extensions including neutral gear [2]. Ability to stepless change of ratio realized into a small space is useful
also for bikes [18, 23]. In [3, 4] we prove that the proposed TMD design enables to reduce the amplitude the
damped structure vibrations to very low values (signi�cantly smaller than in the system without the TMD).

The proposed TMD design consists of some speci�c mechanisms that are crucial for its performance
and reliability. For example the inerter with the CVT has been designed and built speci�cally for the
purpose. In this paper we describe the details of the design of the prototype device and the experimental
rig. We indicate the most critical elements of the TMD and present their construction. Apart from that, we
indicate the sources of nonlinearities in the model and investigate their in�uence on the dynamical response
of the system. Then, we consider di�erent sources of energy dissipation in the system. We investigate them
separately and propose overall simpli�ed energy dissipation model that can facilitate the dynamical analysis.
We perform a series of dedicated tests to estimate parameter values and validate the model of the system
experimentally. We consider both free vibrations and excited motion to prove the robustness of the energy
dissipation model. It is especially important because, as indicated in [3, 4], damping in the TMD strongly
in�uences its e�ciency and the range of e�ectiveness.

The paper is organized as follows, in Section 2 we describe the design of the prototype and the experi-
mental rig. The model is presented in Section 3. In Section 4 we show the details of measurement setup and
the strategy to obtain system's parameters. We also compare the numerical and experimental time traces.
The model of the excitation mechanism and comparison of the experimental and numerical time traces of
the forced system are shown in Section 5. Finally, we summarize and conclude our work in Section 6.

2. Description of the rig design

The laboratory rig consists of two one degree-of-freedom oscillators. The �rst (main) oscillator has
dominant mass and is forced externally. Our aim is to mitigate its vibrations by the addition of the speci�c
TMD. Particularly, the novel TMD design that enables stepless changes of inertance to tune its natural
frequency to the current frequency of excitation. To ensure proper operation of the rig we make several
design assumptions, requiring:

• ability to test di�erent TMD/CVT embodiments,

• ability to test performance of the novel type of TMD in a wide range of excitation frequencies,

• ability to control the amplitude and the frequency of kinematic excitation,

• ability to change parameter values of the main mass assembly,

• easy modi�cations of the rig structure,

• low manufacturing cost,
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• minimum energy dissipation in the guiding of the TMD.

• minimum internal damping of the CVT.

Figure 1: Design of the laboratory rig (a) and its realization (b). Parts presented in the �gure: 1 - Outer steel structure, 2 -
Struts, 3a and 3b - Main inner structure, 4 - Guide shaft, 5 - Kinematic excitation assembly, 6 - Main oscillator structure, 7 -
Mass elements, 8 - Barbell, 9 - Main springs (1 visible out of 6), 10 - CVT assembly, 11 - Moving part of the TMD. Additional
exploded view of the rig is presented in Appendix.

Moreover, to ensure good damping e�ciency and preserve the advantages of the considered TMD design
we have to overcome a number of design and manufacturing challenges. The two most challenging issues
are to design the CVT and guiding for the TMD with low motion resistances. Both issues are crucial,
because in our previous paper [3] we have shown that the damping e�ciency drops with the increase of
internal damping of the TMD. When designing the CVT, we have to �nd the optimal tradeo� between
the maximum transmitted torque and motion resistance. It is especially important because all known CVT
designs include prestressed elastic elements to prevent slip and enable transmission of torque. Unfortunately,
these elements cause energy dissipation even when the gear load is small. Similarly, for guiding of the TMD
our aim is to select the design that has the least motion resistances and provides the required load capacity.

The considered experimental rig is the updated version of the setup considered in [4]. Comparing
current design of the rig with earlier version we modi�ed the TMD guiding, CVT, TMD frame and some
minor parts of the main oscillator. The aim of redesigning was to improve the reliability and versatility of
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Figure 2: Isometric view of the TMD. Parts presented in the �gure: 12 - Main rollers, 13 - Side rollers, 14 - TMD springs, 15 -
Spring plates, 16 - Spacing spring blocks, 17 - Tension rods, 18 - Gear rack.

the rig. Considering di�erent possible realizations of design guidelines we created the rig presented in Fig.1.
Additionally we create exploded view (see Appendix) of the rig where main subassemblies are presented
separately. Note that outer steel structure is excluded from the view. The system shown in Fig.1 consists of
one degree of freedom kinematically forced oscillator and the prototype TMD. The frames of the main mass
and the TMD are made from aluminum and steel pro�les. The outer steel structure No. 1 has a square
base of �0.7 [m] and is 1.6 [m] of height. The arrangement of struts (parts No. 2) is introduced to increase
the rigidity. The outer steel frame supports the main inner structure (parts No. 3 (a,b)) in which four main
guide shafts (parts No. 4) are positioned. Additionally, the outer steel structure also holds the kinematic
excitation assembly (part No. 5). The main mass oscillator assembly is suspended with six springs (part
No. 9 - only one out of six is visible) whose second ends are �xed to the main inner structure. The main
oscillator is a frame made from aluminum pro�les. Four vertically mounted pro�les on its corners are used
as a linear bearing housings. The barbell (part No. 8) enables to add mass elements (parts No. 7) to adjust
the overall mass of the main oscillator. The main oscillator frame supports the CVT assembly (part No.
10) and the �ywheel of the TMD at its driven shaft.

The moving part of the TMD (part No. 11) with mass m is presented in Fig. 2. The structure is guided
through the system of the main rollers and the side rollers (parts No. 12 and No. 13). It performs vertical
movement with relation to the main mass assembly. The TMD is suspended using four springs (parts No.
14) which connect spring plates (parts No. 15) with the spacing blocks (part No. 16) mounted to the main
mass structure. The springs have preload obtained by tension rods (parts No. 17) and enable to shift the
equilibrium position to the middle of TMD oscillating range. The design ensures su�cient rigidity and good
strength-to-weight ratio. Vertical movement of the TMD is converted to the rotational motion by the gear
rack (part No. 18) placed with an o�set from the plane of motion which ensures space for the CVT. The
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Figure 3: Top view of the laboratory rig. Parts presented in the �gure: 18 - Gear rack, 19 - Gear.

gear rack (part No. 18) is cooperates with a gear (part No. 19) on the drive shaft of the CVT as presented
in Fig. 3. The belt-driven CVT presented in Fig. 4 uses modi�ed parts from LinHai ATVs. It consists of
the drive shaft (part No. 20) supported in ball bearing units (parts No. 21) which are connected to the base
made from the aluminum pro�les (parts No. 22) and then to the CVT mounting plate (part No. 23). On the
second end of the CVT, we mount the stationary driven shaft (part No. 24) held by shaft supports (parts
No. 25) which are similarly placed on the aluminum pro�les connected to the CVT mounting plate. Original
centrifugal mechanism of the CVT used to change the gear ratio is replaced by two modi�ed rear clutch
pulley assemblies. The CVT drive shaft is directly connected to the �rst modi�ed clutch pulley assembly. It
consists of original pulley plates (parts No. 26) and components that allow to correcting belt (part No. 27)
compression and torque transmission, namely the spring (part No. 28) and the spring retainer plate (part
No. 29). On the second end of the CVT transmitted torque drives a pair of original pulley plates which
spacing is controlled. The control mechanism enables to change of the CVT ratio using screw mechanism
(part No. 30). The ball transfer unit (part No. 31) is mounted at the end of the screw to provide the
transfer of the control force to the brass sleeve (part No. 32) which is installed on the outside pulley plate.
The transfer unit also allows to compensate the di�erences in rotational speeds between the driven shaft
and the control screw mechanism. To reduce those di�erences the ball transfer unit is positioned by its base
(part No. 33) to have a contact point in the center of brass sleeve.

Kinematic forcing presented in Fig. 5 is realized with the Panasonic MINAS A5 (part No. 34) servomotor
mounted on a plate (part No. 35). It is supported with an angle brackets (parts No. 36) and screwed to
the excitation base (part No. 37). The servo output shaft is connected to the main excitation shaft (part
No. 39) by the claw clutch (part No. 38). The main excitation shaft is supported with ball bearing units
(parts No. 40) which are placed on the aluminum pro�les (parts No. 41) mounted on the excitation base.
The main excitation shaft ends with a sleeve (part No. 42) and a crank regulation disk (part No. 43).
The crank is regulated by changing the position of a short shaft (part No. 44) with respect to the main
shaft axis. The short shaft is a revolute joint for a connection rod (part No. 45) ended with a piston (part
No. 46). The piston head is used to mount a vertical shaft (part No. 47) exerting excitation on the main
mass by the spring with the same sti�ness as the springs supporting the main structure (not shown in the
described �gure). The vertical shaft is guided through a linear bearing unit (part No. 48) connected to the
main inner structure by a mounting plate (part No. 49) connected to the crank mechanism. The servomotor
posses 1.5 [kW] of the nominal power and 7.16 [Nm] of the nominal torque. The servomotor is controlled
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Figure 4: Isometric view of the CVT. Parts presented in the �gure: 19 - Gear, 20 - Drive shaft, 21 - Bearing units, 22 -
Aluminum pro�les, 23- CVT mounting plate, 24 - Stationary driven shaft, 25 - Shaft supports, 26 - Pulley plates, 27 - Belt, 28
- Spring, 29 - Spring retainer plate, 30 - Screw mechanism, 31- Ball transfer unit, 32 - Brass sleeve, 33 - Control system base.

by Panasonic FP-X C30 PLC controller. Such con�guration enables to change servo rotational speed with
the accuracy of 1.0 [rpm] which corresponds to 0.105 [rad/s] and 0.0167 [Hz] (assuming the accuracy of three
signi�cant �gures).

At present, the rig has been designed to proof the idea of the frequency controlled tune mass damper.
It allows to test di�erent con�gurations of CVTs and sizes of �ywheels a�ecting the �nal performance of
the device. However, the rig also enables to test di�ereny types of TMDs and ensures easy control of the
parameter values that are described in the next Section.

3. Mathematical model of the rig

The considered mathematical model of the experimental rig is conceptually the same as the one considered
in our previous paper [4]. Now we consider the updated model with more sophisticated energy dissipation
model. In Fig. 6 we show two schematic diagrams that refer to the analysed model. In panel (a) we present
more detailed model while in panel (b) simpli�ed model with reduced number of parameters. Despite the
level of details the model has two degrees of freedom and consists of two coupled oscillators that can move in
the vertical direction. The �rst oscillator refers to the model of the main oscillator. The second oscillator is
connected to the �rst one and represents the TMD. Both oscillators are connected via linear spring, viscous
damper, inerter and element that models dry friction.

The motion of the system is described by two generalized coordinates: the position of the main oscillator
by coordinate x, while the displacement of the TMD by coordinate y. The main oscillator is characterized
with the following parameters: M is its mass, K is the sti�ness of the single spring that connects the main
mass to the ground, C is the viscous damping coe�cient of dash-pot that links mass M and the support
and D is the amplitude of dry friction force. The system is forced kinematically via a spring of sti�ness K
with the displacement a(t). The excitation mechanism is described in details in Section 5.
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Figure 5: Isometric view of the excitation assembly. Parts presented in the �gure: 34 - Servomotor, 35 - Servo plate, 36 - Angle
brackets, 37 - Excitation base, 38 - Claw clutch, 39 - Main excitation shaft, 40 - Bearing units, 41 - Bearing units bases, 42 -
Sleeve, 43 - Crank regulation disk, 44 - Short shaft, 45 - Connection rod, 46 - Piston, 47 - Vertical shaft, 48 - Bearing unit, 49
- Mounting plate.
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Figure 6: Physical model of the system and notation of parameters with di�erent level of details.

Scheme presented in panel (a) contains comprehensive presentation of the TMD model. To characterize
this system we use the following parameter values: the moving mass is given by m, the sti�ness of the spring
that connects it to the main oscillator is described with parameter k . The viscous damping coe�cient of
the dash-pot that connect mass m with M is given by cm while d is the amplitude of dry friction force
that is generated between the interacting parts. The pitch diameter of the pinion that cooperates with the
moving rack is given by dp; the inertia of the drive shaft of the CVT is given by I1 and its rotational speed
is described as ω1. For the driven shaft that is combined with the �ywheel we use I2 and ω2 respectively.
We assume that the motion of each shaft of the CVT is damped with the torque proportional to its velocity.
Damping coe�cients are given by parameter c1 and c2 for the drive and driven shaft respectively. Parameter
r is the current ratio of the CVT.

Before we derive the equations of motion of the system presented in Fig. 6(a) we introduce relations
between the introduced parameters and coordinates. The rotational speeds of the CVT shafts can be
calculated using the following formulas:

ω1 = 2
ẏ − ẋ
dp

, (1)

ω2 = rω1. (2)

The total kinetic energy T , potential energy V and Rayleigh dissipation function D of the considered
system are given by the following formulas:

T =
1

2
Mẋ2 +

1

2
mẏ2 +

1

2
I1ω̇

2
1 +

1

2
I2ω̇

2
2 , (3)

8



V =
1

2
6Kx2 +

1

2
K (x− a (t))

2
+

1

2
k (y − x)

2
. (4)

D =
1

2
Cẋ2 +

1

2
cm (ẏ − ẋ)

2
+

1

2
c1ω1

2 +
1

2
c2ω2

2. (5)

Apart from the above we use a continuous model of dry friction and assume that the force generated in
the the dry friction elements is given as:

D
2

π
arctan

(
105(ẋ)

)
, (6)

d
2

π
arctan

(
105(ẋ− ẏ)

)
. (7)

Using the Lagrange equations of the second kind we reach two second order ordinary di�erential equations
(ODEs) that describe the motion of the system presented in Fig. 6(a). After simpli�cation, the equations
of motion can be written as follows:

Mẍ+ 7Kx+ Cẋ+
(

1
d2p
I1 + r2

d2p
I2

)
(ẍ− ÿ) + k (x− y) +

+
(
cm + 1

d2p
c1 + r2

d2p
c2

)
(ẋ− ẏ) +D 2

π arctan
(
105(ẋ)

)
+ d 2

π arctan
(
105(ẋ− ẏ)

)
= Ka(t)

, (8)

mÿ−
(

1

d2p
I1 +

r

d2p
I2

)
(ẍ− ÿ)− k (x− y)−

(
cm +

1

d2p
c1 +

r2

d2p
c2

)
(ẋ− ẏ)− d 2

π
arctan

(
105(ẋ− ẏ)

)
= 0. (9)

To reduce the number of parameters and to simplify our model we propose the system that is presented
in Fig. 6(b). Now, we use the simpli�ed model of the inerter that is described only with the inertance I.
Apart from that, we use the single dash-pot with varying damping coe�cient c(I) = cconst + cII. Thanks
to these changes, we interchange 7 parameters I1, I2, cm, c1 c2, dp, r with only two parameters that are
de�ned as follows:

I =
4

d2p
I1 +

4r2

d2p
I2, (10)

c(I) = cm +
4

d2p
c1 +

4r2

d2p
c2 = cconst + cII. (11)

Assuming the accessible range of the CVT ratios we calculate the range in which we can smoothly change
value of parameter I. Then, we calculate the values of two constants cconst and cI that describe the viscous
damping in the system. The behaviour of the simpli�ed model (see Fig. 6(b)) is governed by the following
equations of motion:

Mẍ+7Kx+Cẋ+I (ẍ− ÿ)+k (x− y)+c(I) (ẋ− ẏ)+D
2

π
arctan

(
105(ẋ)

)
+d

2

π
arctan

(
105(ẋ− ẏ)

)
= Ka(t),

(12)

mÿ − I (ẍ− ÿ)− k (x− y)− c(I) (ẋ− ẏ)− d 2

π
arctan

(
105(ẋ− ẏ)

)
= 0. (13)

All the values of parameters involved in the numerical model have been derived in a series of dedicated
experiments that are described in Section 4. For integration we use RK45 method implemented in Matlab
with relative and absolute errors equal to 1e-3 and 1e-6 respectively (default values). It is a �fth order
Runge-Kutta method with a variable time step. It is important to notice that the well-possedness of the
model has been preliminary con�rmed in our previous paper [4] where we also show the potential e�ciency
of the device. System presented in this paper is modi�ed version of the rig based on our experience gained
during the �rst series of experimental investigations.
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4. Measurement of system parameters

In this section we present a full data that is needed to obtain the reliable numerical model of our
experimental rig. In [4] we considered earlier version of the rig. We modi�ed the TMD guiding, CVT, TMD
frame and some minor parts of the main oscillator. The aim of redesigning was to improve the reliability
and versatility of the rig. After the improvement, we performed a detailed measurement of parameter values
that are included in the mathematical model of the rig.

The parameters of the system can be divided into two groups. In the �rst group we have parameters that
can be measured directly (masses, sti�nesses of springs, lengths and dimensions). While in the second group,
we have the parameters involved in the energy dissipation model. It is well known that the identi�cation of
energy dissipation mechanisms and parameter identi�cation is often a chellenging task [20, 22, 1]. The values
of damping coe�cients and dry friction forces have to be estimated in a speci�c parameter identi�cation
procedure.

To obtain experimental data we use the following sensors and data acquisition system. To detect the
position of the main mass we use a precise laser sensor Microepsilon optoNCDT1302 with 0.2 [m] range.
Another laser sensor Keyence LK-G157/LK-G152 together with the dedicated controller LK-GD500 is used
for detecting the crank position. To measure the velocities of the main mass and the TMD we use with
two Polytec HSV 700 sensor heads with two Polytec HSV2002 controllers. All signals are acquired with
the Bruel and Kjaer frame type 3660 with 3050 input module. Such con�guration allows us to acquire six
high-precision inputs with frequency up to 51.2 [kHz]. All the signals are collected using the Pulse LabShop
software with no further �ltering of the data.

4.1. Masses, moments of inertia and sti�nesses

The masses of all components of the main oscillator and the TMD have been weighed before the system
was assembled. We take initial values of springs' sti�nesses from catalogs. However, those values may not
be precise enough. To validate them we perform a simple experiment. We detach the TMD from the main
mass to obtain one degree of freedom (DoF) system. We measure its natural frequency α1 and then we
add additional mass m1 = 20 [kg]. Then, we once again measure the natural frequency α2. The dissipation
of energy is small, hence with good precicion we can assume that the natural frequency is a function of
mass and sti�ness. Then, we obtain two equations: Mα2

1 = K and (M +m1)α2
2 = K with two unknowns

and we calculate the exact values of mass and sti�ness of the main oscillator. The same procedure is
performed for �xed main oscillator to estimate parameters of the TMD. In this case, we consider the TMD
as a one DoF oscillator and add 2 [kg] for the second trial. By that, we reach the �nal values of parameters:
M = 102.66 [kg], K = 8181.0 [N/m], m = 12.82 [kg], k = 10985.1 [N/m].

To model the inerter with the CVT we have to get the range of accessible values of I (Eq. 10). Parameter
dp = 60 [mm] which is a pitch diameter of the pinion was taken from the catalogue. The moment of inertia
of both shafts I1 = 0.0036 [kgm2] and I2 = 0.0027 [kgm2] were derived basing on detailed 3D CAD models.
We measure the accessible range of gear ratios r ∈ 〈0.58, 1.76〉 of the CVT. Then, we are able to evaluate
the following achievable range of inertance I ∈ 〈4.72, 12.9〉 [kg].

4.2. Dissipation in the main oscillator guiding

The main mass is guided by the set of linear bearings that move along four main guide shafts. The hou-
sings for the linear bearings are mounted to the main oscillator assembly. To estimate the energy dissipation
we detach the TMD and measure free vibrations of the main mass assembly. In the �rst approximation, we
use the method of Linag and Feeny [11, 13] to estimate the partitions of viscous damping and dry friction
force. The obtained values do not re�ect experimental measurments su�ciently, so we decide to implement
the additional identi�cation method. We use the gray box model identi�cation algorithm implemented in
Matlab identi�cation toolbox. The algorithm is based on the minimizing estimation prediction error [15].
Model of the main oscillator used in the identi�cation procedure is based on Eq. (12) with y component
and its derivatives assumed to be zero. Hence, we obtain one DoF system given by second order ODE:

Mẍ+ 7Kx+ Cẋ+D
2

π
arctan

(
105ẋ

)
= 0. (14)
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Figure 7: Comparison of the experimentally and numerically obtained time traces of free vibrations of the main oscillator (a),
the TMD itself (b) and the TMD with the ineter and CVT (c,d).

The input parameters are K = 8181.0 [N/m] and M = 102.66 [kg]. The model quality evaluation is
achieved by comparing simulated and measured displacements and calculating the normalized root mean
squared error (NRMSE) using function implemented in Matlab. The value of �t is calculated as follows:

NRMSE = 100
(

1− ‖r−r̂‖‖r−r‖

)
[%], where r represents the experimental data, r̂ is an output from mathemati-

cal model and r is a mean value of the experimental data. To have reliable results we perform identi�cation
procedure on 10 sample signals. The exemplary results are shown in Fig. 7(a) illustrating the accurate cor-
respondence between data in the majority of time (NRMSE = 95.65 [%]). One clearly visible inexactness
appears during last part of motion. It is mainly caused by di�erent friction decomposition. In the proce-
dure we identify the viscous damping coe�cient and the dry friction force which are C = 1.7688 [Ns/m],
D = 10.1270 [N] (mean values form all samples) respectively.

4.3. Dissipation in the TMD guiding

In the next step, we identify the dissipation in the TMD guiding created as the system of rollers -
parts No. 12 and 13 presented in Fig. 2. Similarly to the previous Subsection we try to describe complex
phenomena with overall dissipation model that includes viscous and Coulomb damping components and try
to �t its parameter values to reproduce the observed behaviour with good precision. We consider TMD
itself by disconnecting the CVT and in consequence the inerter. Then, in Eq. (13) we assume that x and its
derivatives are equal to zero. Hence, the equation subjected to identi�cation has one DoF and is as follows:
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mÿ + ky + cmẏ + d
2

π
arctan

(
105ẏ

)
= 0. (15)

As aforementioned, the veri�ed values of the mass and the spring sti�ness are m = 12.82 [kg] and
k = 10985.1 [N/m]. We perform parameters identi�cation procedure similar to the one described in the
previous subsection and we also test 10 samples. The exemplary comparison between experimental data
and the result from direct numerical integration gives NRMSE = 96.99 [%] �t and we present time traces
in Fig. 7(b). Estimated parameter values are cm = 0.0095 [Ns/m], d = 15.0109 [N] (mean values form all
the considered samples). The last parts of numerical simulations di�er from the measured data. However,
di�erences are minor and we cannot expect that the same model of dissipation (with the same parameter
values) will give an excellent �tting for both large, medium and small amplitudes of vibrations. Moreover, in
our model we are interested in large and medium amplitudes because such range refers to the real working
conditions.

4.4. Dissipation in the CVT

The results presented in the previous subsection show that it is possible to model the energy dissipation
in the linear guiding with overall dissipation model that includes viscous and Coulomb damping components.
For that case the dry friction dominates while partition of the viscous damping is nearly zero. Now, we
consider damping in the CVT of our design. However, when we add the CVT the viscous damping starts to
play signi�cant role in the overall dissipation model. Moreover, for varying ratios of the CVT the damping
coe�cient varies. That is why in our model viscous damping dependends on the current ratio of the CVT
(see Section 3 and Eq. (11)). Hence, the equation used in the identi�cation procedure has the following
form:

(m+ I) ÿ + ky + c(I)ẏ + d
2

π
arctan

(
105ẏ

)
= 0, (16)

where c(I) = cconst + cII. Parameter cconst is the constant component of the viscous damping coe�cient
in the CVT and inerter, while cI is the inertance dependent part of the viscous damping coe�cient. The
damping coe�cient cm is included in cconst, hence it is not present in the equations. We �x the value of dry
friction force by setting its value to d = 15.0109 [N] (identi�ed in the previous step) and we only identify the
viscous dissipation parameters. We run the TMD with minimum and maximum ratios (10 times for each
setting) and we �nd the corresponding viscous damping coe�cients for each case. Exemplary results are
shown in Fig. 7(c,d). Panel (c) corresponds to minimal IMIN = 4.72 [kg] and and panel (d) to maximum
IMAX = 12.9 [kg] inertance respectively. In panel (c) the correspondence between data is NRMSE = 92 [%]
and in panel (d) the �t is NRMSE = 93.3 [%]. Decrease of data convergence is caused by smaller number
of oscillations' periods in comparison to the main mass and the TMD itself. Basing on 10 runs we get
the following results: c(I)MIN = 28.7792 [Ns/m] and c(I)MAX = 32.7203 [Ns/m] for total viscous damping
coe�cient for system with minimal and maximal inertance respectively. Hence, the constant and varying
part of viscous damping coe�cient can be calculated by solving the set of equations c(I)i = cconst + cIIi,
where i = 1, 2. The obtained constant viscous damping coe�cient equals cconst = 26.5104 [Ns/m] and
varying part of viscous damping coe�cient equals cI = 0.4811 [Ns/m]. To con�rm the coe�cients velues we
run multiple tests for CVT's ratios between the two extreme settings which proves good matching of the
results.

5. Response of the system under external excitation

In the previous Section, we describe the procedure to measure and validate parameter values of the system
without external forcing. In this section we analyse the mechanism of excitation implemented in our rig and
show the response of the system under excitation. The forcing is realized by crank mechanism, hence it is
not harmonic signal. We show its complete model and we analyse its possible simpli�cations by expansion
is Taylor series. This is important if one want to study the dynamics of system using path-following or
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Figure 8: Scheme of the crank mechanism.

need information how the excitation diverges from the harmonic function. In Section 2 we provide the
detailed description of the technical design of the mechanism. The forcing is kinematic and realized with
the Panasonic MINAS A5 servomotor connected to the crank mechanism. Excitation is transmitted by the
spring with the same sti�ness as springs supporting the main structure (see part No. 9 in Fig. 1). Such
con�guration enables to change the frequency of excitation by varying the servo rotational speed with the
accuracy of 1.0 [rpm] which corresponds to 0.105 [rad/s] and 0.0167 [Hz] (assuming the accuracy of three
signi�cant �gures).

The scheme of the considered crank mechanism is shown in Fig. 8 and consists of the crank and the
connecting rod. In our case the crank has the length of 0.2955 [m] and the connecting rod 0.12 [m]. The
spectrum of forcing signal, due to the structure of the crank, is composed of the main harmonic and the
higher order harmonics. The mechanism can be described by the following vectors: l̄AB , l̄BC , l̄AC and
corresponding angles: ᾱ1, ᾱ2. The lengths lAB and lBC are given by the geometry of the crank mechanism,
while the angle α1 can be calculated based on the current angular velocity of the servomotor (α̇1 = ω1).
The vector inequality l̄AC = l̄AB + l̄BC can be rewritten as a two scalar equations:

lAB cosα1 − lBC cosα2 = 0,
lAB sinα1 − lBC sinα2 = lAC.

Based on those formulas we can derive lAC and α2. However, it is typical to represent the excitation
function as the harmonic signal. Thus, we use the following relations: sinα2 =

√
1− cos2 α2 and cosα2 =

−η cosα1, where η = lAB

lBC
. The sinα2 function can be approximated using a Taylor expansion:

sinα2 =
√

1− η2 cos2 α1 ≈ 1− 1

2
η2 cos2 α1 −

1

8
η4 cos4 α1 +O

(
η6 cos6 α1

)
.

The powers of cosine functions can be represented as a series of the higher order harmonics as: cos2 α1 =
1
2 (1 + cos (2α1)) and cos4 α1 = 1

8 (3 + 4 cos (2α1) + cos (4α1)). Hence, the �nal formula for the actual length
lAC is given by:

lAC = lAB sinα1 + lBC

(
1− 1

4
η2 (1 + cos (2α1))− 1

64
η4 (3 + 4 cos (2α1) + cos (4α1))

)
.

Based on this formula the excitation amplitude a(t) presented in Fig. 6 is given as follows: a(t) =
lAC − lBC and it varies periodically in the range 〈0, 2π). In Fig. 9(a) we show the plot of lAC without
expansion and with expansion of the �rst, the second and the fourth order of sinα2 function in Taylor
series (the third order expansion is the same as the second order due to the lack of odd coe�cients in the
expansion). In the �rst order expansion sinα2 = 1 so lAC is the harmonic function. Nevertheless, the
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Figure 9: Distance lAC in the considered crank mechanism without the expansion and for the �rst, the second and the fourth
order of the expansion of sinα2 in Taylor series (panel (a)) and the relative error of the �rst, the second and the fourth order
expansion in Taylor series with respect to the exact function.

higher order expansions give much better matching with the original function. The relative error of the
�rst, the second and the fourth order with respect to the length lAC calculated without expansion is shown
in Fig. 9(b). The �rst order expansion has maximum relative error below 0.032 while for the higher order
expansions in Taylor series the maximum relative error is 4.9× 10−4 and 1.5× 10−5.

Now, we have all the necessary data to perform the comparison of experimental and numerical time
traces of the forced system. We show the exemplary results for the �xed angular velocity of the servomotor
s = 250 [rpm] and two values of inertance I1 = 6.36 [kg] and I2 = 12.9 [kg]. We show them in Fig. 10. The
matching of results is very good, so we claim that all parameters are identi�ed correctly.

6. Conclusions

In this paper we show the comprehensive presentation of the speci�c TMD design. Its main feature is
the possibility of stepless changes of inertance. The presented TMD is based on the idea proposed in our
previous papers [3, 4] and its novelty is con�rmed with the patent [6]. To prove the concept we design and
build the rig with the prototype device. The presented version of the rig is in our opinion optimal and ful�l
several crucial design's criteria.

We derive the mathematical model and identify the values of system parameters (masses, springs' sti�-
nesses and damping coe�cients). Masses and sti�nesses of the main body and the TMD have been measured
separately in a series of dedicated experiments.

In the next step we focus on the model of the the energy dissipation that is crucial for the e�ciency and
reliability of the TMD. In the considered experimental rig there are numerous sources of energy dissipation,
however in our model we assume that it occurs via viscous damping and dry friction (Coulomb model). To
�nd the partitions of the viscous damping and dry friction in overall dissipation in the �rst approximation
we base on the Feeny and Liang method. Then, in the second step we tune the parameter values using the
gray box model identi�cation method. To illustrate the obtained results we compare the experimental and
numerical time traces. In all cases we obtain very good matching. Hence, we claim that the proposed energy
dissipation model is robust and the identi�cation procedure was performed correctly and gave satisfactory
results. As the last step, we describe the periodic excitation mechanism.

The rig incorporates di�erent types of linear guiding, namely linear bearings and rollers, which have
di�erent energy dissipation mechanisms. In rollers the identi�ed damping is similar in nature to Coulomb
friction, while in linear bearing there is also signi�cant viscous component. This di�erence is important
and should be considered when designing mechanisms including linear guiding. In the considered CVT the
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Figure 10: Comparison between numerical and experimental time traces of forced system for s = 250 [rpm] and two values of
inertance I1 = 6.36 (a) and I2 = 12.9 (b).

torque of internal motion resistance depends on the actual gear ratio. This important feature should be
taken into consideration when designing machines including belt-driven CVTs.

Summarizing, in this paper we describe the details of the prototype TMD focusing on its crucial mecha-
nisms. We propose simpli�ed energy dissipation model that is crucial for the e�ciency of the TMD. After
the parameter identi�cation procedure we obtain the mathematical model and validate it by comparing the
experimental data with numerical simulations. We consider both free vibrations and harmonic excitation.
The presented results prove the robustness of the model. The obtained results prove that the proposed TMD
layout can be realized and e�ciently damp out the vibrations of structures or machines in a particularly
wide range of excitation frequencies.
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Appendix

Figure 11: Exploded view of the laboratory rig. The outer steel structure is excluded from the view.
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