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Abstract

In this paper we present how sample based analysis can complement classical methods for analysis of
dynamical systems. We describe how sample based algorithms can be utilized to obtain better understanding
of complex dynamical phenomena, especially in multistable dynamical systems that are di�cult for analytical
investigations. Relying on the simple direct numerical integration algorithms we are able to detect all possible
solutions including hidden and rare attractors; investigate the ranges of stability in multiple parameters
space; analyse the in�uence of parameters mismatch or model imperfections; assess the risk of dangerous
or unwanted behaviour and reveal the structure of multidimensional phase space. For each mentioned
application we present methodology, example on paradigmatic non-linear dynamical system and discuss
practical applications. The presented methods of analysis can be applied to solve numerous of scienti�c
problems originating from di�erent disciplines. Moreover, their robustness and e�ciency will grow with the
upcoming increase of computational power.

1. Introduction

The stability of dynamical systems have focused the interest of scientist for more than hundred years.
One of the oldest example is the solar system. From our point of view, it is stable and we should not
care about its destabilization, but looking in the timescale of a universe it becomes an important problem.
Copernicus placed the Sun at the centre of the universe [19, 18]. Then, Kepller assumed that planets move
along the perfect ellipses, hence after full revolution they follow the same trajectory [94]. This beautiful
simplicity has been destroyed be the Newtons law of universal gravitation [71] which proofs that interactions
occur between the Sun and all objects that orbit it. Thus, there is no reason to assume that the planet
orbits are �xed ellipses. In the 18th century Lagrange and Laplace correctly formulated the equations of
motion and proofed that Newton's law is the universal explanation for the motion of the celestial bodies
[69]. Since then, many scientists have considered this issue. The breakthrough work has been published by
Poincaré [4, 87] where he showed that it is not possible to integrate the equations of motion of three bodies
subjected to mutual interaction, and not possible to �nd an analytic solution representing the movement of
the planets valid over in�nite time interval. From this moment, we observe an intensive investigation of this
problem, but the real milestone was done by applying numerical methods. Numerical computations show
that the Solar system is unstable, but catastrophic phenomena leading to its destruction can take place only
in a time comparable with its age (approximately 5 billion years) [92, 49, 48].

The modern study of stability starts from fundamental works of Poincaré, Lyapunov and Floquet. Henri
Poincaré wrote a series of texts under common title �On curves de�ned by di�erential equations� [77]. He
initiated a new branch of mathematics called qualitative theory of di�erential equations. He showed that
even if the di�erential equation cannot be solved in terms of known functions, one can extract a wealth of
information about the properties of solutions. Poincaré main interest was the nature of trajectories of integral
curves in the plane space. He provided a classi�cation of singular points (saddle, focus, centre, node) and
introduced the concept of a limit cycle. Two years after Poincaré, in 1883 Gaston Floquet published paper
[31] in which he de�ne the stability of periodic solutions basing on eigenvalues of monodromy matrix [46].
Nine years after the publication of Floquet, in 1892 Aleksandr Lyapunov defended his PhD thesis entitled
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�The general problem of the stability of motion� [58]. He introduced de�nition of equilibrium stability, i.e.
asymptotically and exponentially stable orbits. The intensive development of numerical techniques let us
calculate Lyapunov exponents [72, 86, 6, 33] to characterize the stability of arbitrary type of solution. Basing
on the sign of Lyapunov exponents we can also classify the types of quasi-periodic and chaotic solutions
[75, 40, 7].

In aforementioned studies, the stability is calculated only in the close neighbourhood of the considered
orbit. Such knowledge is enough if system is monostable, but if the system is multistable some perturbation
may cause sudden change in behaviour and result in jump to di�erent coexisting solution. Thus, we should
gain better insight on the structure of the phase space in a wider range. It can be achieved via analysis of
basins of attraction [29, 36, 5]. For systems with two generalized coordinates basins of attraction show all
solutions as the behaviour of the system depends only on two initial conditions. Thus, we are able to re�ect
the structure of the phase space in a 2D plot and analyze the boundaries of basins of attraction. Most of
practically inspired models have more then two dimensional phase space, which make investigations much
more di�cult because we can only look at the two-dimensional cuts of multi-dimensional phase space. This
shows the importance of the analysis of stability and detection of basin boundaries. Such boundaries can be
smooth or fractal [47, 74, 61]. If the the boundary of basin is a smooth curve or a surface the range of solution
stability can be de�ned precisely. If boundary is more complex - fractal - initial conditions leading to di�erent
coexisting attractors are mixed [38] and we cannot predict the e�ects of even arbitraly small perturbation.
To describe such structure and measure its complexity fractal dimension has been introduced. It provides
a statistical index comparing how detail in a pattern changes with the scale at which it is measured. We
can distinguish several measures like: Hausdor� dimension, box counting dimension, information dimension
and ect. All of them can be used to characterize both basin and attractor [82]. If we focus on the structure
of basins of attraction, we can distinguish following types: compact, eroded or riddle [42, 41]. For compact
basins of attraction the attractor is surrounded with its basin. Hence, within this range we can be sure that
after perturbation the system will go back to the attractor in �nite time. For eroded or riddle basins it is
much harder to predict if a perturbation can cause a jump to another solution. The importance of such
analysis has been presented in 1989 by Thomson [90]. He discussed the basin erosion and indicated that
with varying parameters of the system its basin can change from compact to completely eroded.

The studies of basins of attraction give a detailed knowledge if the dimension of system is low, but
if we analyze multidimensional system we can miss important information. To overcome this problem a
new methods of investigations have been proposed. Rega and Lenci proposed �basin integrity measures�
[80, 55, 56] that describe the erosion of basins, i.e., global integrity measure and integrity factor. These
measures enable to asses if the basin has safe, compact structure or it has fractal structure. Still, basin
integrity measures are also hard to obtain for high-dimensional systems. Nevertheless, for low dimensional
systems this method gives precise information about the multistable system dynamics. The advantages of
this method has been proved on multiple investigations of various systems including systems with impacts
[52, 53, 51], parametric excitation [54, 55], shells [34] and single-mode model of non-contact atomic force
microscopy [81]. All these studies show that we can assess the structure of basins of attraction and basing
on the obtained results we are able to propose e�ective control algorithms to reduce the erosion of basins.

The second method called �basin stability� has been developed by Menck et. al. [63, 64]. Basin stability
method enables to quantify stability basing on the probability of reaching given attractor from random
initial conditions. To calculate basin stability measure one has to perform a signi�cant number of Bernoulli
trials and classify the �nal solutions reached in each trial. Proposed idea have been successfully applied to
asses the stability of power grids [64, 85], systems with time delay [57], chimera states [79], stabilization of
saddle �xed points in coupled oscillators [78] and brain dynamics [62]. In our previous papers we proposed
extensions of this method [12]. Additionally to initial conditions we draw the parameters of the system.
Such approach let us include in the analysis the uncertainty of parameters or just perform the very e�cient
investigation of coexisting solutions for systems with varying parameter values. We validate the accuracy of
the proposed method with experimental study [15]. The next method �basin entropy� has been proposed by
Daza et. al. [22]. They propose another sample based algorithm to test the structure of basins of attraction
to obtain information about its fractality. Basin entropy has been used for investigate the dynamics of
propagating matter waves [21, 23] and the �ux in twist Hamiltonian systems [68].

2



The three mentioned methods need very e�cient algorithms and high computational power. Still, nowa-
days computational power is constantly increasing and let us use sample-based methods to analyze systems
from di�erent disciplines of science. Thanks to that, many complex problems can be solved using numerical
algorithms instead of analytical derivations. Advanced computing enables to simplify scienti�c analysis and
gives new possibilities for solving the most important problems.

In the paper we present four possible utilizations of sample-based analysis. In Section 2 we brie�y
present the basics of the basin stability and describe sample applications of this method. In Section 3 we
show the expansion of the basin stability concept that enables e�ective analysis of systems with parameters
mismatch. It enables to analyze the e�ects of system imperfections and varying working conditions. Section
4 is devoted to the description of how sample based methods can be used to determine ranges of stability and
predict conditions that ensures the highest probability of reaching given solution. The presented approach
has similar precision to classical methods of analysis but it is straight forward and can be applied for all
types of dynamical systems. Moreover, basing on the data obtained with the algorithm we are able to
characterize the structure of the phase space. It is described in Section 5 where we show how sample based
approach supplements basins of attraction and dynamical integrity measures. It is especially important for
multi-DoF systems where we cannot project the basins of attraction to present their boundaries and volume.
In all sections we start with paradigmatic models to present the underlying methodology and supplement
the description with real world example of possible utilization of the method. We conclude the presented
material in Section 6.

2. Basin stability method

In this section, we show in detail the idea of basin stability method which enables to estimate the
stability and number of solutions for given values of system parameters. The idea is strikingly simple but
the method has found numerous successful applications and proved to be an e�cient tool for dynamical
analysis. The growing interest in this method comes from its two main advantages. Firstly, it is suitable for
multidimensional and multistable systems where the classical approaches are di�cult and time consuming to
apply. Secondly, it can be easily applied to all types of systems and reproduces the inherent uncertainty of
perturbations. To apply basin stability method we just need to have a reliable direct numerical integration
code for the mathematical model of the investigated system. The computational e�ort does not grow
signi�cantly with the increase of the phase space dimensions. This makes this sample-based method even
more appealing for the analysis of very high-dimensional systems such as large networks of oscillators, power
grids or neural networks. Moreover, in our previous paper we prove that the results form basin stability
method match with the results form the path-following analysis and experiment [15].

2.1. Methodology

The algorithm is simple and based on the series of N Bernoulli trials. For each trial we randomly select
initial conditions and detect the �nal attractor using direct numerical integration. Based on this one can
calculate the chance to reach given solution and determine the distribution of probability for all coexisting
solutions. This gives information about the number of stable solutions and the sizes of their basins of
attraction.

Consider the dynamical system with �xed parameters ẋ = f (x, t), where x ∈ Rn is the state vector
and t ∈ R is time. Let B ⊂ Rn be a set of all possible initial conditions. Let us assume that attractor A
exists, is stable and has a basin of attraction β(A). Lets assume that within N overall trials attractor A was
reached nA times. Assuming random initial conditions the probability that the system will reach attractor
A is given by:

p (A) =
nA
N

(1)

This probability is the estimator of the basin stability measure that re�ects the relative volume of the
basin of attraction of attractor A. If this is equal to one (p (A) = 1.0) this means that considered solution
is the only one in the taken range of initial conditions and given values of parameters. Otherwise, other
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attractors coexist and system is multistable. Due to physical limitation we cannot take the initial conditions
form the in�nite set but we draw them form set BA ⊂ B. We can consider two possible ways to impose the
limit to this set and both of them are based on preliminary analysis of the system. The �rst ensures that
set BA includes values of initial conditions leading to all possible solutions. This approach is appropriate if
we want to get general overview of the system's dynamics. In the second approach we use narrowed set of
initial conditions that corresponds to practically accessible initial states.

2.2. Applications

The basin stability method has been already utilized in numerous applications. Originally, it has been
created to analyze the synchronizability of Watts�Strogatz networks consisting of paradigmatic Rössler os-
cillators [63]. Authors vary the topology of the network starting form regular to random structure (which
corresponds to di�dent applications e.g. visual cortex, power grids and neural networks). The main con-
clusion is that the synchronous state is much more stable in networks that are more regular. In [85] the
relationship between stability against large perturbations and topological properties of a power transmission
grid has been analized. Authors introduce a very fast tool to predict the appearance of nodes with poor
single-node basin stability. This algorithm can be applied during live operation of a power grid to increase
safety of the network. The next study has been focused on details of modelling of power grids [3]. It
proves that voltage dynamics should be taken into account in model of synchronous machines. In mountain
ranges, big lakes or inland seas we often observe large closed loops in high voltage AC power grids [17].
The basins stability method has been used to identify three mechanisms which create the circulating power
�ows. Moreover, one can �nd signi�cant number of studies that use basin stability method to show the way
to increase the e�ciency of power grids [43, 44, 83, 2]

Maslennikov et. al. [62] study the basin stability of the burst synchronization regime in small-world
networks consisting of chaotic slow-fast oscillators. The results con�rm that the coupling density and the
coupling strength in�uence the basin stability similarly and there are threshold values above which the
basin stability of the burst synchronization regime signi�cantly increase. The same method has been used
to analize the explosive transitions between synchronous and non-synchronous states in networks [96]. Next,
in [45] Authors consider synchronized state in time-varying complex networks (the time-varying character
is ensured by stochastic rewiring of links with de�ned frequency). In [65] Mitra et. al. propose the general
framework of multiple-node basin stability for gauging the global stability and robustness of networks in
response to non-local perturbations simultaneously a�ecting multiple nodes of a system. It helps to estimate
the threshold number of simultaneously perturbed nodes that reduce the capacity of the system and triggers
the return to the original solution.

In all dynamical systems the �nal state is always achieved after some transient time. Quite often, it
is very hazardous range of the time evolution because the trajectory of the system can move very close to
the boundary of stability and even a small perturbation can result in jump to another solution. To study
transient dynamics an extension of basin stability method "constrained basin stability" has been created
[93]. The time of recovery after perturbation has been discussed in [66].

The interesting application of the basin stability method to systems with time delay has been presented
in [57]. The time delay is present in population dynamics, epidemiology, neurobiology, control engineering,
optoelectronic and many more [35, 1, 32]. Due to presence of time delay the dimension of system phase
space is in�nite. Thus, the elaboration of the e�cient tool to analyze solutions in this class of equations
is extremely important. Authors propose a technique which projects the in�nite dimensional initial state
space to a �nite-dimensional Euclidean space using three di�erent bases: the Bernstein, the trigonometric
and the Legendre and show on numerous examples that it is very e�ective. The basin stability has been
also applied to piecewise and discontinuous systems (Amazonian vegetation model [67], externally forced
oscillator with impacts [12] and system with dry friction [30]) where it gives information of co-existing
solutions and volumes of their basins of attraction in multidimensional phase space.
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3. Investigation of systems with parameters mismatch

Basin stability measure was initially proposed as a tool to characterize the stability of di�erent syn-
chronous states of complex networks of oscillators. Thanks to its paradigmatic simplicity basin stability
method can be easily expanded by drawing values of system's parameters. The underlying idea is to take
into consideration the fact that values of system's parameters are measured or estimated with some �nite
accuracy which is often hard to determine. Moreover, values of parameters can vary during normal opera-
tion. Still, in practical applications we usually need certainty that presumed solution has enough surplus of
stability to ensure safe operation. Hence, there is a need to describe how small changes of parameters' values
in�uence the behaviour of the system. Our method provides such description and allows to estimate the
required accuracy of parameters' values. Moreover, we can also consider the risk of unwanted phenomena
under presence of model imperfections and parameters mismatch. Hence, it is time e�cient, can be applied
in a wide range of systems and does not require high computational power. The method is described in
detail in our previous paper [12]. In this Section we brie�y recall the proposed methodology, present results
from paradigmatic systems and discussed some potential practical application.

3.1. Methodology

Consider the dynamical system ẋ = f (x, t, ω), where x ∈ Rn is the state vector, t ∈ R is time and
ω ∈ Rm are the system parameters, where m is the number of parameters that are taken into account. Let
B ⊂ Rn be a set of all possible initial conditions and C ⊂ Rm a set of accessible values of system parameters.
Let us assume that attractor A exists for ω ∈ CA ⊂ C and has a basin of attraction β(A). In classical
approach of Menck et. al. [63] the stability of attractor A is assessed basing on the probability of reaching
A with random initial conditions but for �xed parameters (see Section 2.1).

We propose to not only draw initial conditions but also values of some selected parameters of the system
from the set CA ⊂ C that consists of all practically accessible values of system's parameters ω. This let
us ensure that given solution exists in this range (taking into account the mismatch in parameters). Next,
we subdivide set CA in to m = 1, 2, . . .M equally spaced subsets. Subsets CmA do not overlap and the
relation

⋃
m=1...M CmA = CA is always ful�lled. Then for each subset CmA we randomly pick N sets of initial

conditions and value of the considered parameter. For each set we check the �nal attractor of the system.
After su�cient number of Bernoulli trials we can calculate the probability of reaching presumed solution or
solutions. As a result we can describe the relation between the value of the system's parameter and volume
of basin stability of reachable solutions. Value of N strongly depends on the complexity of analysed system,
i.e. mainly on the size of phase space, the number of coexisting solutions and the structure of basins of
attraction and size of initial conditions and parameters sets. Moreover, the computation time for single
trial and should be adjusted for each system independently to ensure that the �nal attractor is reached. In
general, we recommend that in most cases N should be at least one hundred.

3.2. Paradigmatic examples

In this Section we present the methodology using two paradigmatic nonlinear dynamical systems: pen-
dulum suspended to the Du�ng oscillator and bilinear impacting oscillator. Both systems are excited with
harmonic external force and have multiple stable attractors.

The �rst example presented in Fig. 1(a) is the Du�ng oscillator with suspended pendulum that acts
as a tuned mass absorber. The main body consists of mass M �xed to the ground with nonlinear spring
(hardening characteristic k1 + k2y

2) and viscous damper (damping coe�cient cy). The mass M is forced
externally by harmonic excitation with amplitude F and frequency ω. The pendulum has length l and mass
m. The small viscous damping is present in the pivot of the pendulum that is described by parameter cϕ.
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Figure 1: The models of the considered paradigmatic systems: externally forced Du�ng oscillator with attached pendulum
(tuned mass absorber) (a) and bilinear impacting oscillator (b).

The derivation of equations of the system's motion can be found in [13]. Here, we present the dimen-
sionless equations of motion:

ẍ′ − aϕ̈′ sinϕ′ − aϕ̇′2 cosϕ′ + x′ + bx′3 + cẋ′ = f cosωτ,

ϕ̈′ − jẍ′ sinϕ′ + d sinϕ′ + hϕ̇′ = 0,
(2)

where dimensionless time τ = tω0 (ω0 =
√

k1
M+m is the natural linear frequency of Du�ng oscillator),

a = m
M+m , b = k2l

2

k1
, c =

cy
(M+m)ω0

, f = F
k1l
, ω = ν

ω0
, d = g

ω2
0l
, h =

cϕ
ml2ω0

, x′ = y
l , ẋ

′ = ẏ
ω0l

, ẍ′ = ÿ
ω2

0l
, ϕ′ = ϕ,

ϕ̇′ = ϕ̇
ω0

and ϕ̈′ = ϕ̈
ω2

0
. As control parameters we take the amplitude f and the frequency ω of external

forcing. The dimensionless parameters have the following values: a = 0.303, b = 0.031, c = 0.132, j = 0.3,
d = 0.3, h =0.02. For simplicity primes in dimensionless equations will henceforth be neglected and we use
x and ϕ as dimensionless generalized coordinates of the system.

The second considered paradigmatic example is the system with impacts investigated previously in [73].
The system is shown in Figure 1(b) and consists of mass M suspended by linear spring with sti�ness
k1 and viscous damper with damping coe�cient c to harmonically moving frame. The frame oscillates
with amplitude A and frequency Ω. When amplitude of mass M motion reaches value g we observe soft
impacts (spring k2 is signi�cantly sti�er than spring k1). To equation of motion is derived in [73]. Here, we
present dimensionless form of equation and to obtain it we use the reference length y0 = 1[mm]. Thus, the
dimensionless equation of motion is as follow:

ẍ+ 2ξẋ+ x+ β (x− e) H (x− e) = aω2 sin (ωτ) (3)

where x = y
y0
, ẋ = ẏ

ωny0
, ẍ = ÿ

ω2
ny0

are the dimensionless vertical displacement, velocity and acceleration of

mass M , τ = ωnt is the dimensionless time, ωn = k1
M is natural frequency of linear system, β = k2

k1
is the

sti�ness ratio, e = g
y0

is the dimensionless gap between equilibrium of mass M and the stop suspended on

the spring k2, a = A
y0

and ω = Ω
ωn

are dimensionless amplitude and frequency of excitation, ξ = c
2mωn

is

the damping ratio and H(·) is the Heaviside function. In our calculations we take the following values of
system's parameters: a = 0.7, ξ = 0.01, β = 29 and e = 1.26. As a controlling parameter we use frequency
of excitation ω.
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3.2.1. Results

Du�ng system with suspended pendulum

At the beginning, we want to recall the results we have presented in our previous paper [13]. As a
summary we show two dimensional bifurcation diagram obtained by path-following method in Figure 2. It
shows bifurcations for varying amplitude f and frequency ω of external excitation (see Eq. 2). Lines shown
in the plot correspond to di�erent types of bifurcations (period doubling, symmetry breaking, Neimark-
Sacker) and resonance tongues. The main di�erence between solutions is the behaviour of pendulum, hence
we introduce the notion which let us distinguish them. The Du�ng system follows the excitations, while
pendulum oscillates or rotates. The number of full period of pendulum motion di�ers for one period of
excitation. To de�ne it, we introduce the ratio u : z which gives information how many periods of excitation
u are performed for z number of pendulum oscillations or rotations (the period of given solution corresponds
to u multiply by period of excitation). We present these lines in one style because the structure is too
complex to follow bifurcation scenarios and we do not need that data (details are shown in [13]). We mark
areas where we observe the coexistence of one (black colour), two (grey colour) and three (hatched area)
stable solutions. The remaining part of the diagram (white area) corresponds to situation where there are
four or more solutions simultaneously. Additionally, by white colour we also mark areas where only Du�ng
system is oscillating in 1:1 resonance with frequency of excitation and the pendulum is in stable equilibrium
position, i.e., hanging down pendulum (HDP) state. In this case the dynamics of the system is reduced to
the oscillations of summary mass (M + m). As we can see, the range where less than three solutions exist
is rather small.

The detailed analysis of the system given by Eq. 2 is time consuming and creation of Figure 2 was
preceded by complex analysis done with large computational e�ort. Additionally, the obtained results do
not give us information about the size of basins of attraction of each solution and their stability margins.
Thus, using the path-following analysis we can obtain detailed bifurcation structure of system but cannot
assess which solutions are practically accessible and are expected to occur in the real system. For example
some solutions may need initial conditions which are not accessible in practice (too large displacement
or velocity) or have minimal stability margin such that even small perturbation may cause the jump into
another attractor. We will present that sample based analysis serves greatly for that purpose. For illustrative
purposes we focus on three solutions: 2 : 1 oscillating resonance, HDP and 1 : 1 rotating resonance assuming
that only they have practical meaning.
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Figure 2: Two-parameter bifurcations diagram in plane (f, ω) showing periodic oscillations and rotations of pendulum. Black
colour indicates one attractor, grey colour shows two coexisting attractors (the same as for black but with coexisting stable
steady state of the pendulum). In the hatched area we observe the coexistence of stable rotations and stable steady state of
the pendulum. Figure reprinted from [12]. Detailed analysis can be found in [13].

Firstly, we show reference results obtained with direct numerical integration. These are two bifurcation
diagrams calculated for constant amplitude of excitation f = 0.5 and frequency from the range ω ∈ [0.1, 3.0]
(see Figure 3). In Figure 3(a) we increase excitation frequency ω from 0.1 to 3.0 and in subplot (b) we
decrease ω from 3.0 to 0.1. As the initial conditions for the �rst points of the bifurcation diagrams we take
equilibrium position (x0 = ẋ0 = 0.0 and ϕ0 = ϕ̇0 = 0.0). In both panels we plot amplitude of pendulum
ϕ which re�ects the type of attractor. In the considered range there are two dominating solutions: HDP
and 2 : 1 internal resonance. Near ω = 1.0 we observe a narrow range of 1 : 1 and 9 : 9 resonances
and chaotic motion (for details see Figure 6 in [13]). Ranges where diagrams di�er are marked with grey
rectangles. Based on previous results we know that we detect all solutions existing in the considered range,
however we do not have data about size of their basins of attraction and coexistence. Hence, the analysis
with proposed method should give us new important information about system's dynamics. Contrary to
bifurcation diagram obtained by path-following presented in Figure 3 we do not observe a rotating solutions
(the other set of initial conditions should be taken). This shows the main disadvantage of classical bifurcation
diagrams.
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Figure 3: Bifurcation diagrams obtained using direct numerical integration. For subplot (a) value of bifurcation parameter ω
was increased while for subplot (b) we decreased value of ω. Gray rectangles mark the ranges of bifurcation parameter ω for
which di�erent attractors coexist. Figure reprinted from [12].

Now, we apply the sample based analysis. The initial conditions are random numbers drawn from the
following ranges: x0 ∈ [−2, 2], ẋ0 ∈ [−2, 2], ϕ0 ∈ [−π, π] and ϕ̇0 ∈ [−2.0, 2.0] (ranges there selected basing
on the results from [13]). Frequency of excitation is within range ω ∈ (0.0, 3.0] (Figure 4(a,c)), then to have
a zoom in narrower range, we re�ne it to ω ∈ [1.25, 2.75] (Figure 4(b,d)). In both cases we take 15 equally
spaced subsets of ω and in each subset we calculate the probability of reaching given solution. For each
subset we calculate N = 1000 trials each time drawing initial conditions of the system and value of ω from
the appropriate range. Then we plot the dot in the middle of the subset which indicate the probability of
reaching given solution in each considered range. Lines that connect the dots are marked just to show the
tendency. For each range we take N = 1000 because we want to estimate the probability of solution with
small basin of stability (1:1 rotating periodic solution).

In Figure 4 we show the probability of reaching three aforementioned solutions obtained using the
proposed method. In Figure 2 we see that the 2 : 1 resonance solution exists in the area marked by black
colour around ω = 2.0 and coexists with HDP in neighbouring grey zone. In Figure 4 we mark the probability
of reaching 2 : 1 resonance (p(2 : 1) ) using blue dots. As we expect for ω < 1.4 and ω > 2.2 the solution
does not exist. In the range ω ∈ [1.4, 2.2] the maximum value of probability p(2 : 1) = 0.971 is reached in
the subset ω ∈ [1.8, 2.0] and outside that range the probability decreases signi�cantly. To check if we can
reach p(2 : 1) = 1.0 (so that it is the only stable attractor) we decrease the range of parameter's values to
ω ∈ [1.25, 2.75] and the size of subset to ∆ω = 0.1 (to remain with 15 equally spaced subsets). The results
are shown in Figure 4(b) using blue colour. In the range ω ∈ [1.95, 2.05] the probability p(2 : 1) is equal
to unity and in range ω ∈ [1.85, 1.95] it is slightly smaller p(2 : 1) = 0.992. Hence, for both subsets we can
be nearly sure that system reaches 2 : 1 solution. This gives us indication of how precise we have to set the
value of ω to be sure that the system will behave in a presumed way. This has practical importance and
can be used when designing the system which cannot be multistable.

The similar analysis is performed for HDP solution. The values of probability are re�ected using red
dots on the same plots in Figure 4. For ω ≤ 0.8, ω ∈ [1.2, 1.4] and ω ∈ [2.6, 2.8] the HDP is the only
existing solution. The rapid decrease close to ω ≈ 1.0 indicate the 1 : 1 resonance and the presence of other
coexisting solutions in this range (see [13]). In the range ω ∈ [1.2, 1.4] the basin stability of HDP solution is
a unity (p(HDP) = 1.0) which corresponds to a border between solutions born from 1 : 1 and 2 : 1 resonance.
Hence, up to ω = 2.0 the probability of HDP solution is a mirror refection of p(2 : 1). The same tendency
is observed in the narrowed range as presented in Figure 4(b). Finally, for ω > 2.0 the third considered
solution comes in and we start to observe an increase of probability of rotating solution as shown in Figure
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4(c). However, the chance of reaching rotating solution remains small and never exceeds p(1 : 1) = 8×10−3.
We also plot the probability of reaching rotating solution in the narrower range of ω in Figure 4(d). The
probability is similar to the one presented in Figure 4(c) - it is low and do not exceed p(1 : 1) = 8 × 10−3.
Note, that results presented in Figure 4(a,b) and Figure 4(c,d) are computed for di�erent sets of random
initial conditions and parameter values, hence the obtained probability can be slightly di�erent. Still, it is
inherent feature of the sample based methods and does not impede their advantages.
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Figure 4: Probability of reaching given solutions in the system 2. Subplots (a,b) present the probability of reaching 2 : 1
periodic oscillations (blue) and HDP (red). Subplots (c,d) presents the probability of reaching 1 : 1 rotations (black). (Please
note that in both cases (a,b) and (c,d) the initial conditions and parameter are somehow random, hence the results may slightly
di�er). Figure reprinted from [12].

Bilinear impacting oscillator

Now, we present the analysis of the bilinear system with impacts. A discontinuity usually increases the
number of coexisting solutions. Hence, in the considered system we observe a large number of di�erent
stable orbits, but we will consider only periodic solutions of di�erent periods. In Figure 5 we show two
bifurcation diagrams with ω as controlling parameter. Both of them are obtained by starting with zero
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Figure 5: Bifurcation diagram showing the behaviour of impacting oscillator (see Eq. 3). Subplot (a) for increasing value of
the bifurcation parameter ω and (b) for decreasing the value of ω. Grey rectangles mark the range of the bifurcation parameter
ω for which di�erent attractors coexist. Figure reprinted from [12]. Further analysis can be found in [73].

initial conditions x0 = 0.0 and ẋ0 = 0.0. In panel (a) we increase ω from 0.801 to 0.8075; while in panel
(b) we decrease ω in the same range. We select the range of ω basing on the results presented in [73]. As
one can see, both diagrams di�er in two zones marked by grey colour. Hence, we observe a coexistence of
di�erent solutions, i.e., in the range ω ∈ [0.8033, 0.8044] solutions with period-3 and -2 are present, while
in the range ω ∈ [0.8068, 0.8075] we detected solutions with period-2 and -5 (numbers indicate how many
times the period of solution is longer then the period of excitation). As presented in [73], some solutions
appear from a saddle-node bifurcation and we are not able to detect them with the classical bifurcation
diagram. The proposed method solves this problem and shows all existing solutions in the considered range
of excitation frequency.

We focus on periodic solutions with periods that are not longer than eight periods of excitation. Solutions
with higher periods are observed in the narrow range of ω but the probability that they will occur is very
small so they can be neglected. All non-periodic solutions are chaotic (quasiperiodic solutions are not present
in this system). The results of our calculations are shown in Figure 6(a,b). We take initial conditions from
the following ranges x0 ∈ [−2, 2], ẋ0 ∈ [−2, 2]. The controlling parameter ω is changed from 0.801 to
0.8075 with step ∆ω = 0.0005 in Figure 6(a) and from 0.806 to 0.8075 with the step ∆ω = 0.0001 in Figure
6(b). In each subrange of excitation's frequency we pick the exact value of ω randomly from this subset,
as described earlier. The probability of reaching periodic solutions is plotted with lines of di�erent colours
that are created by joining markers that re�ect probability obtained for given range of ω. The solutions
of di�erent periods were detected and investigated, namely solutions with period-1, -2, -3, -5 (two di�erent
attractors with large and small amplitude), -6 and -8. We also calculate the sum of reaching one of all
periodic solutions' (also with period higher then eight). It is plotted with yellow markers and lines. When
its value is below 1, chaotic solution exists. Dots are drawn for mean value i.e, middle of the subset. For
each range we take N = 200 and we increase the calculation time because the transient time is su�ciently
larger than in the previous example due to the piecewise smooth characteristic of spring's sti�ness.

As we can see, the chance of reaching a given solution strongly depends on ω. Hence, in the sense of
basin stability we can say that ω value strongly a�ects stability of attractors. In Figure 6(a) the probability
of a single solution is always smaller than one. Nevertheless, there are two dominant solutions: period-5
with large amplitude in the �rst half of the considered ω range and period-2 in the second half of the range.
The maximum registered value of probability is p(period− 2) = 0.92 and it refers to the period-2 solution
for ω ≈ 0.80675. To check if we can achieve even higher probability we analyse a narrower range of ω and
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Figure 6: Probability of reaching periodic solutions in the bilinear impacting oscillator 3(a,b) and relative basins volume (c,d).
In Subplots (a,c) we analyze ω ∈ [0.801, 0.8075] with the step ∆ω = 0.0005, and in subplots (b,d) we narrow the range
ω ∈ [0.806, 0.8075] and decrease the step size ∆ω = 0.0001. (Note that initial conditions and parameter are somehow random,
hence the results may slightly di�er).

decrease the range from which we draw ω value (from ∆ω = 0.0005 to ∆ω = 0.0001). In Fig. 6(b) we see
that in range ω ∈ [0.8069, 0.807] the probability of reaching the period-2 solution is equal to unity. Hence,
in the sense of basin stability it is the only stable solution. In the range ω ∈ [0.8065, 0.8072] the probability
of reaching this solution is higher then 0.9 and we can say that its basin of attraction is strongly dominant.
Hence, the obtained results give the required tolerance of ω to omit multistability and be sure that period-2
solution will be observed. This proves the practical importance of the method.

Other periodic solutions presented in Figure 6(a) are: period-1 is present in the range ω ∈ [0.801, 0.8025]
with the highest probability p(period− 1) = 0.4, period-3 exists in the range ω ∈ [0.803, 0.805] with the
maximum probability p(period− 3) = 0.36, period-2 is observed in two ranges ω ∈ [0.8025, 0.8035] and
ω ∈ [0.804, 0.8045] with the highest probability equal to 0.18 and 0.12 respectively. Solution with period-5
(small amplitude's attractor) exists also in two ranges ω ∈ [0.8055, 0.8065] and ω ∈ [0.807, 0.8075] with the
highest probability equal to 0.14 and 0.43 respectively.

The same information can be also presented using the relative basin volume plots as shown in panels
(c,d) in Fig. 6. Such plots are predisposed for presentation when we consider multiple solutions as they
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Figure 7: Schematics of the physical model of the yoke-bell-clapper system in di�erent planes to show its geometry, kinematics
and physical parameters.

enable easy comparison between basins volume and make presentation more readable when many solutions
have similar basin probability measure.

3.3. Practical application

Now, we will present an example of practical application of the above technique basing on the hybrid dy-
namical model of the yoke-bell-clapper system. The model was validated experimentally [11] and thoroughly
analysed using classical methods including direct numerical integration [10] and path-following [16, 9]. The
model possess a plethora of interesting dynamical phenomena including multistability [16, 9] and new type
of bifurcation called �impact adding bifurcation� [9]. This system is highly predisposed to sample analysis
because in most cases we cannot determine parameter values with good precision. It is due to the fact that
bellfounding (casting of bells) is still based more on traditional methods and local customs than engineering
science. Similarly, when designing the yoke and propulsion one does not have the precise knowledge about
the shape of the bell and clapper. Thus, we usually observe some imperfections and the real system is
just a rough embodiment of the assumed design. This problem can be partly solved with the sample based
analysis, in which we can introduce parameters mismatch and �nd ranges of crucial parameter values which
guarantees the highest probability that the system will work properly.

The investigated model is based on the existing bell �The Heart of Lodz� of the Cathedral Basilica of St
Stanislaus Kostka, Lodz, Poland and all parameters values were obtained in a series of dedicated experiments
[11, 10]. The derivation of the model is described in detail in [11] and now we just brie�y recall it. The
developed mathematical model is based on the analogy between freely swinging bell and the motion of the
equivalent double physical pendulum. The �rst pendulum has �xed axis of rotation and models the yoke
together with the bell that is mounted on it. The second pendulum is attached to the �rst one and imitates
the clapper. Figs 7(a,b) show schematics indicating the position of the rotation axes of the bell o1, the
clapper o2 and presenting parameters involved in the model. For the sake of simplicity, henceforth, the term
�bell� is used for the bell and its yoke, which is treated as one solid element.

The model has eight physical parameters: L0 describes the distance between the rotation axis of the
bell and its centre of gravity (point Cb), l is the distance between the rotation axis of the clapper and its
centre of gravity (point Cc). The distance between the bell's and the clapper's axes of rotation is given by
lc0. The mass of the bell is described by M , while Bb0 characterizes the bell's moment of inertia referred to
its axis of rotation. Similarly, m describes the mass of the clapper and Bc stands for the clapper's moment
of inertia referred to its axis of rotation.

We have to remember that we consider a musical instrument, hence we cannot change most of its
parameters as it could a�ect the sound it generates. In real applications we can easily modify the driving
motor and the mounting of the bell (by changing the design of the yoke). Therefore, in our investigation
we will consider alterations of these two features taking as a reference parameter values that refer to �The
Heart of Lodz�.
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Parameter lr is used to describe the modi�cations of the yoke, as it is presented in Fig. 7(b,c). The
lr de�nition is explained in detail in our previous paper [10], where lr = 0 refers to the shape of original
yoke used in the Cathedral's Basilica bell. If the centre bell's of gravity is lowered with respect to its axis
of rotation, lr < 0, otherwise lr > 0. The change of the yoke design given by the value of lr a�ects other
parameters. Therefore, in the mathematical model, the following parameters that describe the system with
the modi�ed yoke are used:

L = L0 − lr, lc = lc0 − lr, Bb =
(
Bb0 −ML2

0

)
+ML2. (4)

The bell is excited with a linear motor. When the de�ection of the yoke is smaller than π/15 [rad] (12o)
the motor is active and generates the torque. The torque generated by the motor T (ϕ1) is given by the
piecewise formula:

T (ϕ1) =


Tmax sgn(ϕ̇1) cos (7.5ϕ1) , if |ϕ1| ≤ π

15

0, if |ϕ1| > π
15

(5)

where Tmax is the maximum torque. Although, the above expression is not fully accurate re�ection of the
e�ects generated by the linear motor it is able to reproduce the characteristics of the modern bells' driving
mechanisms [11]. We can easily modify the e�ects generated by the motor by changing the range of bell's
de�ection in which the motor is active (in our case [−π/15, π/15]) or by altering the maximum generated
torque Tmax which is much easier to realize in practice [10]. Therefore, we take Tmax as the second control
parameter.

As shown in Fig. 7(a) we use a planar co-ordinate system where the angle between the bell's axis and
the downward vertical is given by ϕ1 and the angle between the clapper's axis and downward vertical by
ϕ2. Angular parameter α describes the impact condition as follow:

|ϕ1 − ϕ2| = α. (6)

Synonymously, contact between the bell and the clapper occurs when a relative angular displacement between
the bell and the clapper is equal to α.

The Lagrange equations of the second type are employed to derive two coupled second order ODEs that
describe the motion of the system:

(
Bb +ml2c

)
ϕ̈1+mlclϕ̈2 cos (ϕ2 − ϕ1)−mlclϕ̇2

2 sin (ϕ2 − ϕ1)+(ML+mlc) g sinϕ1+Dbϕ̇1−Dc (ϕ̇2 − ϕ̇1) = T (ϕ1),
(7)

Bcϕ̈2 +mlclϕ̈1 cos (ϕ2 − ϕ1) +mlclϕ̇
2
1 sin (ϕ2 − ϕ1) +mgl sinϕ2 +Dc (ϕ̇2 − ϕ̇1) = 0, (8)

where g stands for gravity.
We use a discreet impact model. If Eq. 6 is ful�lled, the numerical integration process is paused. Then,

simulation is restarted with updated initial conditions. The bell's and the clapper's angular velocities are
swapped from the values before the impact to the ones after the impact. The angular velocities after the
impact are obtained by taking into account the energy dissipation and the conservation of the system's
angular momentum that are expressed by the following formulas:

1

2
Bc (ϕ̇2,AI − ϕ̇1,AI)

2
= k

1

2
Bc (ϕ̇2,BI − ϕ̇1,BI)

2
, (9)

[
Bb +ml2c +mlcl cos (ϕ2 − ϕ1)

]
ϕ̇1,BI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,BI =[

Bb +ml2c +mlcl cos (ϕ2 − ϕ1)
]
ϕ̇1,AI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,AI

(10)
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where index AI stands for �after impact�, index BI for �before impact� and parameter k is the coe�cient of
energy restitution and in our simulations we assume k = 0.05 [−] [11]. Eqs 7 and 8 together with the impact
model create a hybrid dynamical system.

The mathematical model contains eleven physical parameters which values were derived experimentally
in a series of dedicated experiments. Their values are the following: M = 2633 [kg], m = 57.4 [kg], Bb0 =
1375 [kgm2], Bc = 45.15 [kgm2], L0 = 0.236 [m], l = 0.739 [m], lc0 = −0.1 [m] and α = 30.65o = 0.5349 [rad],
Dc = 4.539 [Nms], Db = 26.68 [Nms] and we consider the control parameters from the following ranges:
Tmax ∈ [100, 650] [Nm] and lr ∈ [−1.3, 0.25] [m].

Results

Depending on local customs and traditions bells can have di�erent working regimes. We can alter them
easily by changing the design of yoke and/or propulsion [10]. Still, for some values of parameters the system
is multistable and the �nal attractor depends on initial conditions or starting procedure. Moreover, as
mentioned before, the �nal object is often a rough realization of initial concept, and we cannot predict the
actual values of system parameters before it is build. Thus, instead of analyzing the dynamics for some
�xed values we can apply the sample based approach. Including some parameters mismatch we can estimate
the ranges of parameters that ensure proper working conditions and de�ne the precision required to achieve
mandatory level of reliability. As a reference we use the results presented in [9] where we consider alteration
of the yoke design given by parameter lr. As a reference we use �The Heart of Lodz� which works in
�symmetric falling clapper� regime (collisions between the bell and the clapper occur when they perform an
anti-phase motion). We consider the range of parameter lr ∈ [−0.3, 0.2] [m] in which we observe 13 di�erent
types of attractors and multistable regions. The detailed description of all considered solutions is given in
[9], where we also present in depth analysis done using the path-following method [20] and direct numerical
integration. The obtained results enable to detect the ranges where we presume that there is only one stable
attractor. Moreover, for multistable regions we do not have the knowledge about the chances of reaching
given solution and structure and size its of basins of attraction. To obtain such information we apply the
sample based analysis described above.

We divide the investigated range of lr ∈ [−0.3, 0.2] [m] into 50 subranges of equal length 0.01 [m] which
re�ects the maximum expected precision of assembly. For each subset we perform 40 000 trials of direct
numerical integration each time drawing the values of lr and initial conditions from accessible ranges which
are assumed as follows:

ϕ10
∈ [−π, π] [rad],

ϕ20
∈ [−π, π] [rad],

ϕ̇10 ∈ [−π/2, π/2] [rad/s],
ϕ̇20 ∈ [−π, π] [rad/s],

(11)

additionally condition that ensures that clapper is inside the bell |ϕ10
− ϕ20

| ≤ α must be ful�lled. Then, for
each trial we detect the �nal attractor and estimate probability of reaching given solution in each considered
range. The results are shown in Fig. 8. In panel (a) we present the bifurcation diagram obtained using
multiple trials of direct numerical integration (it was previously shown and described in [9]). In panel (b)
we show how the probability of reaching given solution depends on the value of lr. Finally, in panel (c) we
present the relative volume of basins of attraction.

All considered solutions are given in the table at the bottom of Fig. 8. Analysing the plots we see that
in the range lr ∈ [−0.09, 0.13] [m] solution 8 has the dominant volume and the basin stability measure
greater than 0.8. This solution corresponds to the original working regime of �The Heart of Lodz� and
has the largest range of stability. The second larges range of stability refers to solutions 6 and 7 which
are two types of �asymmetric falling clapper� and are another type of proper working regime (the impact
occurs only on one side of the bell). Solutions 2, 3, 4 and 5 are all periodic with di�erent number of
impacts per period of motion. Moreover, for solutions 3, 4 and 5 we can de�ne the range in which they have
basin stability greater than 0.98, so theoretically, they can be applied in the real system and assure reliable
operation. Solution 1 refers to periodic oscillations without impacts, hence we should omit it similarly as
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Figure 8: Bifurcation diagram (a) shows possible responses of the yoke-bell-clapper system and outcomes of the sample based
analysis (b,c). Panel (b) shows the changes in probability of reaching given solution and panel (c) the changes of relative basin
volume. Considered solutions and corresponding colours are given in the table at the bottom. Numbers (nos) of solutions
correspond to the notation used in [9].
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all non periodic solutions depicted in panel (c) with grey colour. In the righthand side of the plot we see
the sequence of impact adding bifurcations in which solutions 9, 10 and 11with di�erent number of impacts
are created. However only solution 9 have basin stability greater then 0.96 in the range lr ∈ [0.14, 0.16] [m]
and can be realized in practice. Finally, for lr > 0.17 [m] solution 12, which corresponds to the �sticking
clapper� regime (working regime in which the clapper and the bell remain in contact for a certain amount of
time), has the dominant basin. Summarizing, the sample based analysis presented above enables to detect
the ranges of parameter values that ensure predictable behavior and reliable operation.

4. Analysis of multistability

There is a rich variety of mathematical tools to analyze multistable dynamical systems. Still, more
sophisticated methods are usually di�cult to apply. For example, there are a number of di�erent toolboxes
that enable the path-following analysis but their functionality is strictly limited to the type of the investigated
system and its dimensionality [25, 28, 91]. The dynamical analysis is especially challenging for multistable
systems, where we have to consider multiple steady states that coexist in the phase space. It is a challenging
problem and multistability is widely studied in many disciplines [88, 59, 60, 39, 95, 84, 76, 26]. Therefore,
new sample based tools for dynamical analysis are being developed such as survivability [37] that includes
the analysis of the transient motion and basin entropy [22] that measures the basin compactness. The
concept presented in the previous Section is also suitable for investigation of multiple coexisting attractors.
Moreover, it enables to perform simultaneous analysis in a multi-parameter space. In this Section we will
show analysis in two-parameter space and compare the results from sample-based analysis with detailed two
parameter bifurcation diagrams obtained using the path-following method. Then, to validate the method
we confront the results with experimental data. By that we are able to critically compare the accuracy of
both methods and show their strengths and weaknesses. Finally, we show that the sample-based approach
can be applied without a precise knowledge of parameter values and it gives results that can be used in
practice.

4.1. Investigated system

We consider the speci�c type of a double pendulum (see Fig. 9) which is a paradigmatic example in
nonlinear dynamics. The �rst pendulum rod is mounted horizontally and connected to the base with a pin
joint at one end and via a spring on the second end. Hence, the �rst pendulum always performs oscillatory
motion. The second pendulum is connected to the �rst one with a rotational pivot at the distance x1 between
both pin joints. The support is mounted on a shaker and excited kinematically in the vertical direction.
This is a physical model of the existing experimental rig shown in the photographic picture in Fig. 9(b).
The dynamics of this system was analysed in the recent article [15].

The system has two degrees of freedom. The angular displacement of the �rst pendulum is given by
generalized coordinate ϕ1 and the position of the second pendulum by ϕ2. The shaker excites the system
kinematically with a harmonic function of the amplitude A and frequency ω. The upper pendulum has
the length l1, the mass m1, the moment of inertia J1 and the centre of gravity located at the distance d1

from its pin joint. The sti�ness of the spring that supports the end of the pendulum is given by k. The
second pendulum has the mass m2, the moment of inertia J2 and the center of gravity located at d2 from
its pin joint. Due to the relatively small damping in the system we neglect e�ects of dry friction and other
non-linearities of damping characteristics and in both pivots we assume the viscoelastic damping. For the
�rst pendulum the damping coe�cient is given by c1 and for the second one by c2.
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Figure 9: The physical model of the considered double pendulum excited kinematically (Eq. 12) with its parameters.

The equations of motion of the system shown in Fig. 9 are given by the following second order ODEs:

(
J2 +m2d

2
2

)
ϕ̈2 +m2d2

(
Aω2 cos(ωt) + g

)
sinϕ2+

+m2d2

(
x1

(
cos (ϕ1 − ϕ2) ϕ̇2

1 + sin (ϕ1 − ϕ2) ϕ̈1

))
+ c2ϕ̇2 = 0,(

J1 +m1d
2
1 +m2x

2
1

)
ϕ̈1 + c1ϕ̇1 + 1

2 l
2
1k sin (2ϕ1) +m2x1d2

(
sin (ϕ1 − ϕ2) ϕ̈2 − cos (ϕ1 − ϕ2) ϕ̇2

2

)
+

− (m1d1 +m2x1)
(
Aω2 cos(ωt) + g

)
cosϕ1 = 0.

(12)
The parameters have the following values: J1 = 4.524 [10−3kgm2], m1 = 0.5562 [kg], l1 = 0.315 [m],

d1 = 0.180 [m], x1 = 0.153 [m], c1 = 0.05 [Nms], k = 6850 [N/m], J2 = 4.469 [10−5kgm2], m2 = 0.02077 [kg],
d2 = 0.063 [m], c1 = 7 [10−6Nms], g = 9.81 [m/s2]. All the parameter values were determined in a series of
dedicated experiments. Thanks to the shaker the amplitude and frequency of excitation can be changed in
the following ranges A ∈ [0, 0.0077] [m] and ω ∈ [0, 60] [rad/s]. These ranges are de�ned by the limitations
of the experimental rig, higher amplitudes of the shaker are impossible to achieve and for higher values of
frequencies the accessible amplitude of the excitation Amax is rapidly dropping.

We have to estimate the ranges of initial conditions that can be applied on our experimental rig. In a num-
ber of dedicated experiments we de�ned the accessible ranges of initial conditions that describe physical re-
strictions of our rig: ϕ1ε [−0.0015, 0.0015] [rad], ϕ2ε [−π, π] [rad], ϕ̇1ε[−1.2, 1.2] [rad/s], ϕ̇2ε[−60, 60] [rad/s].
Then, we divide the considered ranges of parameter values into a regular two dimensional grid in the fol-
lowing way: for the frequency of excitation (ωε[0, 60] [rad/s]) we assume 23 subsets with equal width of
2.5 [rad/s]. We intentionally omit extremely small values of ω and start from the range[1.25, 3.75] [rad/s]
(for �rst column of the grid) and �nish with [56.25, 58.75] [rad/s] (for the last column). For the ampli-
tude of forcing Aε [0, 7.7] [10−3m] we take 15 equally spaced subsets with the step of 0.5 [10−3m]. Here,
we also ignore values near the accessible boundaries and start the lower row of the grid with the range of
[0.25, 0.75] [10−3m] and �nish the grid with [7.25, 7.75] [10−3m]. By that, we receive a lattice of 345 boxes
each covering the range of 2.5 [rad/s] and 0.5 [10−3m] of the forcing frequencies and amplitudes respectively.
For each box in the grid we perform 500 trials of direct numerical integration. Each time we randomly pick
the initial conditions from the accessible ranges and draw the values of A and ω from the ranges assigned
to the grid box. For every trial we recognize the �nal attractor that is reached by the system. In a proce-
dure described above, we obtain a large data set of 172, 500 Bernoulli trials that we use to characterize the
possible behaviors of the system.

4.2. Methodology

We investigate the ranges of stability of coexisting solutions in two-parameters space using two di�erent
approaches and validate them with experiments. We start with the path-following method to get a precise
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boundaries of solutions' stability in two-parameters. The path-following analysis is done with the AUTO-
07p software [24]. Each time we start with a direct numerical integration to prepare the initial periodic
solution for continuation. Then, we perform with one parameter continuation in selected parameter. We
detect the bifurcation points in which the stability of solution changes and perform continuation of the
bifurcation points in two parameters space. For the solutions detected numerically, we experimentally �nd
the boundaries of the stability similarly in the two parameter space (here we use the amplitude and frequency
of excitation A and ω, respectively).

Then, for each solution we perform experiments to assess the stability ranges. The starting points for
the experimental study are located far from the boundary of stability to ensure that the given solution is
reachable experimentally. Depending on the shape and area of the stability range, we select a number of
starting points and for each apply the following procedure:

• We start the parameter values taken from numerical results and try to reach the given solution by
applying proper initial conditions.

• When the system reaches the presumed state we mark current parameters values as a starting point
(black dots in Fig. 10) in the two parameter space.

• Then, we slowly change the value of one parameter with given step. After each step we wait to check
if the system remains on the presumed attractor. The range of the parameter value where the solution
stays stable is marked as a trace with a black line in Fig. 10 (d,e).

• Eventually, we reach the parameter value for which the solution becomes unstable and the system
jumps to a di�erent attractor. We note the parameter value for which the solution changed.

• In each case we repeat the above steps four times and compute the average values of parameters for
which the solution looses its stability. We take this value as the boundary of stability and mark it
with the perpendicular end of the stability trace (see Fig. 10 (d,e).

To estimate the position of a line that indicates the boundary of stability obtained by the path-following
method in the two parameter space, we repeat the above procedure for di�erent pairs of parameters values
(starting points).

Finally, we apply the sample-based approach (as described in Section 3) to determine the ranges of
parameters for which the given solution can be reached. We divide the considered ranges of parameter
values into a regular two dimensional grid. For each box in the grid we perform N trials of direct numerical
integration. Each time we randomly pick the initial conditions from the accessible ranges and draw the
values of investigated parameters from the ranges assigned to the grid box. For every trial we recognize the
�nal attractor that is reached by the system. The data enable us to estimate the ranges of stability for each
considered attractor. For that purpose, we detect all the trajectories that go to the investigated attractor
and mark the parameters value (A and ω) for which it has been approached. Then, we plot those values
as a set of points that indicates the region of stability of the investigated solution. Apart from that, the
collected data enable us to calculate the maps of basin stability in the two parameter space, as shown in
Fig. 10(c) and (f) where we show the probability of occurrence of the considered solution.

In Fig. 10 we show the presentation scheme that we use. It enables to show all of the obtained results
and ensures an easy comparison between the methods. In Fig. 10 we present the results yielded for some
exemplary solution (1 : 2 oscillations of system given by equations 12) and explain the presentation layout.
Arrows in Fig. 10 show how the data are interchanged between the panels.

We start with the path-following method. We begin with one parameter continuation performed to
detect the bifurcation points in which the stability of the solution changes. These results are not presented
but we use these points to perform two parameter continuation. The sample results are shown in panel (a)
where lines depict bifurcations and the region of stability is marked with a coloured area. In panel (d) we
show the results from the experimental analysis, while in panels (b), (c) and (f) we present the outcome of
the sample-based approach. In panel (b) we plot a single colour dot (here purple) each time the investigated
solution is reached in a trial. The extended basin stability approach provides a basin stability map shown in
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panel (c). Such plot enables to detect where the solution is more likely to appear due to the increased basin
stability. It is possible to obtain 2D density plots without the grid as shown in panel (c). Such diagram
enables better estimation of the stability boundaries and allows to �nd exact parameter values for which
the probability of reaching given solution achieves extreme value.

To simplify the comparison between the results obtained with di�erent approaches, we combine the
results from panels (a), (b) and (d) in a single plot as shown in panel (e) in Fig. 10. However, the maps
of basin stability provide an additional knowledge about the attractor stability. Hence, for each solution we
present three diagrams corresponding to panels (c), (e) and (f). To underline this fact these three panels
are surrounded with a dashed line.
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Figure 10: Presentation scheme for the stability analysis performed using di�erent methods for 1 : 2 oscillatory solution of
system 12. Panel (a) was obtained from the continuation of a periodic solution, in panels (b,c,f) the results obtained with a
sample-based method and in panel (d) we present experimental data. In subplot (e) we compare the three numerical approaches.
Line types in panel (a) indicate the following bifurcations: continuous line - saddle node, dashed line - period doubling, dotted
line - symmetry breaking pitchfork and dashed-dotted line - branching point where the equilibrium destabilizes and lower
pendulum starts to move.

4.3. Ranges of stability

Analyzing the ranges of stability we take as controlling parameters the amplitude A and the frequency ω
of the external excitation. In the considered ranges of parameters A ∈ [0, 0.0077] [m] and ω ∈ [0, 60] [rad/s]
we found 12 di�erent solutions. The upper pendulum always performs an oscillatory motion, while for the
second pendulum we observe both oscillations and rotations with di�erent locking ratios in respect to the
frequency of excitation. Therefore, we name each solution basing on the behaviour of the second pendulum
and ratio n : m which means that for m periods of excitation we observe n full oscillations or rotations of

20



the second pendulum. We detected and further consider: 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 6, 1 : 8 oscillations, and
1 : 1, 1 : 2, 1 : 3, 5 : 5, 6 : 6, 2 : 3 rotations. The methodology of the investigation was described in Section
4.2 and in Fig. 11 we present the outcome from three considered methods using the described presentation
scheme. The �rst six panels (a-f) refer to oscillatory solutions while in the last six panels we show the results
corresponding to the rotary solutions.

We start the description from the oscillatory case. In panel (a) of Fig. 11 we show the results obtained for
1 : 1 oscillations of the second pendulum. In this solution the amplitude of oscillations is small, and because
of that this solution can be reported as a semi-trivial one. Moreover, if one increase the damping coe�cient
in the pin joint of the second pendulum its motion would be not or barely observable. This solution is
stable in almost the whole analysed range of parameter values except the narrow resonance tongue that
occurs for ω = 20 [rad/s]. During experimental investigations four runs were performed, as we wanted to
�nd the location of bifurcation lines predicted in the path-following analysis. In each run we slowly changed
the value of ω until we reach the moment when the system jumps into another solution. The position of
the branching bifurcation lines have been detected by path-following and con�rmed using both experimental
analysis and sample-based approach. The agreement between the results obtained using all three approaches
is remarkably good. The second analysed solution is 1 : 2 oscillations which corresponds to the resonance
tongue mentioned earlier (around ω = 20 [rad/s]). The results are shown in Fig. 11(b). The path following
analysis reveals that this solution loses its stability either in a saddle node bifurcation (for A ≤ 5 [10−3m])
or in a symmetry braking bifurcation (for A > 5 [10−3m]) that is immediately followed by a cascade of
period doubling bifurcations. The experimental analysis con�rms that the position of the right-hand side
border of the resonance tongue has been obtained with excellent precision. However, the detected range
of stability di�ers from the results obtained via the numerical continuation. The di�erence is especially
visible for A = 4 [10−3m] (in horizontal direction) and for ω = 16 [rad/s] in vertical direction. In these cases
the sample-based method enables a better precision, especially when detecting the left-hand side border of
stability. We see that the density of points decreases signi�cantly before the bifurcation lines are reached.
Thus, using the sample-based approach we can better predict the range in which it is possible to obtain 1 : 2
oscillations in real life. For the third analysed solution 1 : 3 oscillations the results from both methods of
analysis are in good agreement with the experimental data (see panel (c)). Similarly, for 1 : 6 oscillations
(panel (e)) and 1 : 8 oscillations (panel (f)) we observe a concurrence of the results from all the applied
methods. The di�erence between the experimental and numerical results is clearly distinguishable only in
two cases. The experimental investigation revealed that the 1 : 6 oscillations can be achieved also below the
line detected using the path-following method. Also, the position of a period doubling bifurcation which
destroys the stability of 1 : 8 oscillations is di�erent from what we observe experimentally. We think that the
di�erence between the numerical results and the experiment mainly comes from the dissipation modelling
approach which strongly simpli�es the real phenomena [50, 14]. In panel (d) we show the results that
correspond to 1 : 4 oscillations. For this solution, with the sample based approach can obtain the boundary
of stability that better �ts the experimental results then the bifurcation lines obtained via path-following
method. It is especially visible for the left and the lower boundaries in the (A, ω) plane.
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Figure 11: Comparison between the ranges of stability obtained using the path-following method (colour lines), the sample-
based approach (dots) and the experimental investigation (black lines). Each panel correspond to a di�erent solution. Colour
line type depicts the type of bifurcation.
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Having considered all oscillatory solutions we can now focus on the rotary ones. The results are presented
in the last six panels (g-l) of Fig. 11. It is important to notice that we were unable to perform experimental
analysis of last three rotary solutions, namely 2 : 3, 5 : 5, 6 : 6 rotations. We were only able to imitate
2 : 3 rotations but this solution is extremely susceptible to perturbations and the system jumps to another
solution as soon as we try to change the amplitude or frequency of excitation, so it was impossible to
reach the boundary of stability. In panel (g) we show the results obtained for 1 : 1 rotations of the second
pendulum. This solution is stable in a noticeably wide range of excitation parameters and both numerical
methods enable to predict the boundary of stability with good precision referring to the experimental result.
Similar conclusions can be drawn from the analysis of the results obtained for 1 : 2 and 1 : 3 rotations that
are shown in panels (h) and (i) respectively. Analysing the last three panels (j,k,l) of Fig. 11 we see that the
location of stability boundaries predicted using the sample based procedure coincide with bifurcation lines
calculated using the path-following method. To sum up, for all rotary solutions we see a good convergence
between the results obtained using both numerical methods which re�ects the gathered experimental data
with good precision.

The results presented in Fig. 11 prove that for the considered system the path-following method and
the sample-based approach o�er similar accuracy. Also, when comparing the numerical results with the
experimental data we observe good convergence. The advantage of the sample based analysis is that looking
at the density of points we can also estimate the basin stability measure and probability density as described
in the following sections. Such additional knowledge gives insight on the susceptibility to perturbations and
one may expect the di�culties observed during experimental analysis. The important advantage of the
sample-based approach is that during a large number of trials we are able to detect hidden attractors [27]
or solutions with rather meager basins of attraction. In the investigated case we also found solutions that
occurred only once for 172, 500 trials, such as for example 2 : 5 oscillations or 3 : 15 rotations. Moreover,
analysing Fig. 11, we see that with the sample-based approach we �nd the regions with the maximum
density of points. This, in consequence enables to quantify the stability for di�erent values of parameters
using the basin stability measure or to prepare 2D probability density plots to �nd parameter values for
which . To further investigate this topic for each solution we obtain maps indicating the changes of basin
stability in the two-parameter space.

4.4. Basin stability maps

In the previous Section we show the results proving that the sample-based approach enables to predict
the boundaries of stability with precision comparable to path-following method. Now, we show how we
can utilize the results from the sample based method to obtain additional information about the system
dynamics. In particular we will focus on the susceptibility to perturbations. The described algorithm is
predisposed to such analysis because including random initial conditions we somehow investigate how the
system reacts to sudden changes in working conditions. Basin stability measure is based on this concept
and proved to be an e�cient tool in a number of practical applications. Now we use data obtained from
the aforementioned series of Bernoulli trials to analyse the changes of basin stability measure in the two
parameter space. In Fig. 12 we demonstrate the results for all 12 considered solutions. It is important to
notice that we use the grid that re�ects the parameter ranges prede�ned in the calculation procedure and
for each box we perform 500 trials. For all presented diagrams we hold the same colour scale for the basin
stability that is given at the bottom of Fig. 12.

Panel (a) refers to the 1 : 1 oscillations which has the largest range of stability (see Fig. 11(a) ). The
plot reveals that also in the large range of parameters this solution has basin stability greater than 0.5
so it has the dominant volume of the basin of attraction. In these ranges, with probability grater than
0.5 we expect that after random perturbation the system will end up in the basin of attraction of 1 : 1
oscillations. Thus, this solution has relatively low susceptibility to perturbations. Panels (b-f) correspond
to the remaining oscillatory solutions. We see that for most of them, basin stability calculated in the assumed
grid never exceeds 0.3. Still, for 1 : 2 and 1 : 4 oscillations we uncover regions with higher basin stability.
Especially for 1 : 2 oscillations we observe increase of basin stability measure for ω ∈ [18.75, 21.25] [rad/s] and
A > 0.004 [m], i.e., in the middle of the resonance tongue. For rotary solutions (panels (g-l)) we observe the
similar structure of basin stability maps with maximum value of basin stability measure never exceeding.
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Figure 12: Two parameters maps of the basin stability for 12 investigated solutions. The grid corresponds to the lattice used
during the calculations. Below is the common basin stability scale used for all panels.
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The only exception is the region around ω ∈ [25, 35] [rad/s] and A > 0.005 [m] where the probability of
reaching 1 : 1 rotations is higher than 0.3.

Using the data obtained during the numerical procedure we can draw the 2D density plots re�ecting
continuous maps of basin stability (not using the lattice) by using interpolation. For that purpose we use
the two-dimensional kernel density estimation in R software (R-project for statistical computing) [89]. With
that functions we obtain plots presented in Fig. 13 that enables to detect where the given solution has the
biggest relative volume of the basin of attraction. Thus, we are able to �nd the ranges in parameter space
for which the solution is the most likely to appear and has low susceptibility to perturbations. The colour
scale re�ects the relative probability, so with such plots we cannot asses the value of basin stability measure
but we can analyse the changes in the basins volume. Such plots are also convenient for estimating the
boundary of stability.

Analysing the results presented in Fig. 12 and 13 we can divide the considered range of parameter values
into three regions:

1. The range where the semi-trivial solution has the dominant basin of attraction (see panels (a)).

2. The resonance tongue of 1 : 2 oscillations in which this solution has the biggest volume of the basin of
attraction (see panels (b)).

3. The region where, the 1 : 1 rotations has the dominant basin of attraction and we observe the coexis-
tence of many stable solutions (see panels (g)).

The above results prove that with the sample based procedure we are able to obtain additional knowledge
about the systems dynamics that can be presented using basin stability maps (as show in Fig. 12) or
probability density plots (as presented in Fig. 13).

4.5. Investigation with parameters mismatch

The important advantage of sample based methods is the ease to include parameters mismatch as de-
scribed in [15]. It has huge practical importance, because we often cannot obtain the exact values of the
system parameters [70]. The parameter identi�cation procedure is especially di�cult when the model con-
tains parameters whose values cannot be measured directly such as, for example, a value of the viscous
damping coe�cient in a pin joint. Apart from that, when modelling the mechanical and structural objects,
we often simplify complex phenomena using simple models. This can decrease the accuracy of simulations
and cause the divergence between numerical and experimental results. In this section we show that the
extended basin stability method can be applied without the knowledge of actual parameter values and still
maintain the high accuracy of the yielded results.

Let us assume that we do not know precisely the values of some parameters of the system. In a classical
approach, we have to set their values which may lead to wrong results. In the sample-based approach,
instead of setting a value of the parameter, we can estimate the range to which this parameter belongs.
Then, during a series of trials we draw the values of uncertain parameters. Before we apply that to our
problem, we divide the parameters of our system (Eq. 12) into four speci�c groups basing on the ease of
measurements:

1. Parameters that are easy to measure: m1, m2, l1, x1. This group contains the parameters that can
be determined easily with good precision, namely masses and lengths of the physical objects. During
calculations we assume that we determined values of these parameters precisely and do not draw them.

2. Parameters that can be estimated with good precision: J1, J2, d1, d2, k. The methods to measure
these parameters values are not straight forward. In this group there are also parameters whose values
are given by manufacturer with certain precision - as for example the sti�ness of the spring. We assume
that the error for the parameters from that group is ±5% and for each trial we draw the values of
parameters from a certain range.

3. Parameters that are di�cult to estimate: c1, c2. In this group we put parameters that require complex
procedures or approach to infer their values and parameters that refers to phenomena that are di�cult
to model, such as energy dissipation. Values of parameters from this group are drawn from the range
[80%, 120%] of the estimated value.
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Figure 13: Two parameters probability density estimations for 12 investigated solutions. Below is the color scale for relative
probability of reaching each solution.
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4. Parameters whose special in�uence we investigate: A, ω. The aim of the study is to analyse the
in�uence of these parameters on the stability of solutions. For these parameters we do not estimate
the error. Instead, we draw values of these parameters from a �grid� as described in the Methods
section.

Apart from the above, we want to maintain the value of the natural frequency of the second pendulum
which can be easily measured using a simple stopwatch. For that purpose, we draw the inertia of the second
pendulum and recalculate the position of its center of gravity to preserve the natural frequency.

With the above assumptions we repeat all the calculations. In Fig. 14 we present the comparison between
the results obtained with �xed values of parameters and when drawing the parameter values. In the �rst
two columns of Fig. 14 we show the results that refer to 1 : 2 oscillations and last two columns refers to 1 : 3
oscillations. In panels (a) and (e) we show the results from the sample based method with �xed parameters
and in (b) and (f) the points obtained when drawing the parameter values. Similarly, we compare the maps
of the basin stability for �xed parameters (c,g) and obtained with the assumed mismatch (d,h). Results
that refer to the remaining 10 solutions are simmilar, hence we do not present them.

The di�erence in the results from the extended basin stability analysis are barely visible despite the fact,
that the positions of the bifurcation lines change when we modify the parameter values within the assumed
ranges. This shows that the sample-based approach can be applied even without time consuming detailed
measurements of the system's parameters and still ensures sensible results. Instead of precisely measure the
parameter values, we only have to asses the precision for each of the determined parameter.

4.6. Example of practical application

In this Section we apply the above described procedure to analyze the ranges of stability of di�erent
working regimes of the yoke-bell-clapper system described in Section 3.3. The system is multistable and
there are two in�uencing parameters that can be changed to optimize working conditions while not a�ecting
the generated sound, namely the amplitude of exciting torque Tmax and geometry of yoke given by parameter
lr described in Fig. 7. Altering these two parameters we are able to change the response of the system
signi�cantly as described in [10]. Fig. 15(a) is a fragment of the plot presented and described in detail
in [10]. It shows which type of proper working regime will be achieved assuming zero initial conditions
(ϕ1 = 0.0 [rad], ϕ2 = 0.0 [rad], ϕ̇1 = 0.0 [rad/s], ϕ̇2 = 0.0 [rad/s]). Still, the results presented in Fig. 8
prove that due to multistability, for �xed parameter values we are able to obtain di�erent working regimes
by applying non zero initial conditions or using alternative starting procedure. This may be bene�cial in
practice as given bell can work di�erently depending on occasion. To enable such property we should know
the precise boundaries of stability of solutions with respect to Tmax and lr as these parameters determine
the needed power of linear motor propulsion and geometry of a yoke. This can be achieved using the sample
based approach described above.

We consider the following ranges of parameters values: Tmax ∈ [100, 300] [Nm] and lr ∈ [−0.3, 0.2] [m]
and run 400 000 simulations each time drawing values of Tmax, lr and initial conditions from the ranges
given in Eq. 11. We are especially interested in solutions that correspond to proper working regimes or
have signi�cantly large range of stability. Hence, we will only present ranges of stability for solutions given
in the table on the right hand side of Fig. 15. The results are presented in Fig. 16. Each panel corresponds
to di�erent solution and presents the estimation of probability density of reaching it. Moreover, with white
dashed lines we mark the regions in which the solution is reached from zero initial conditions.

In panel (a) we show results for solution 1 (period 1 attractor with no impacts). We see that in the
whole stability region the probability of reaching this attractor is similar and stability boundary overlaps
with white dashed line which depicts the range of parameters for which solution 1 is reached from zero initial
conditions. Such agreement is observed only for solution 1. Panel (b) refers to asymmetric falling clapper
regime (solution 6 or 7) and we see that at the right hand side boundary of stability the probability of reaching
this solution is gradually decreasing while it drops suddenly on the left boundary. There is a signi�cant range
of parameter values for which this solution coexists with symmetric falling clapper (solution 8) as shown in
panel (c). In this multistable region solution 8 has dominant volume of basin of attraction. Panels (d) and
(e) present the results obtained for solutions 9 and 12 respectively. In both cases the probability of reaching
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considered solution does not �uctuate strongly in the stability range. The overall probability of reaching a
non periodic solution is shown in panel (f). The stability boundary more less overlaps with the white dashed
lines which depict the range of parameters for which starting from zero initial conditions we do not reach
proper working regime. However, between the white lines the probability of reaching non-periodic solution
strongly varies. This means that in that range there are some stable attractors which was also detected in
one parameter analysis (see Section 3.3) as shown in Fig. 8. We do not prepare additional plots for these
solutions as they are not signi�cant from practical point of view. It is important to notice, that even if there
is only one stable attractor we can observe some variability of relative probability density. This is the e�ect
of the sample based approach in which we do not ensure same density of trials in the analyzed parameters
region. However, with su�cient number of trails we can neglect it. Summarizing, using the sample based
approach we can prepare plots that precisely indicates the ranges of stability in two-parameters space and
enables to determine parameter values that ensure biggest relative probability of reaching presumed solution.

5. Characterization of phase space structure

Another important application of the sample based methods refers to the analysis of phase space organi-
zation which is largely unexplored especially for multi-degrees-of-freedom systems due to the computational
challenge requested to build basins of attraction. Sample based analysis may help to overcome this problem.
We propose to estimate the probability of reaching the attractors using a reasonable number of trials with
random initial conditions. Then, we use the obtained results to investigate how this probability depends on
particular generalized coordinate or a pair of coordinates. In the analysis we include all initial conditions,
and re�ect their in�uence on the �nal behaviour. The method allows to obtain information about the basins
compactness and reveals particular features of the phase space topology. To analyse the trustworthiness
of the proposed approach we compare the results with the classical computation of basins of attraction
performed in the full range of initial conditions. Finally, we present example of practical application basing
on the previously described hybrid dynamical model of the yoke-bell-clapper system.

5.1. Methodology and exemplary paradigmatic system

In this section we present the methodology basing on the analysis of the phase space structure of exter-
nally forced Du�ng oscillator with attached pendulum. It is the model presented in Fig. 1(a) and described
in Section 3.2. It is given by Eq. 2 but we change the parameter values to better �t the purpose. The
parameters have the following values: a = 0.091, b = 6.4, c = 0.302, j = 1,, d = 3.37, h = 0.0129, f = 0.5
and ω = 1.1, for which we observe two stable solutions. We start with explanation of the methodology and
description of the presentation scheme for the obtained results. Then, we focus on the advantages of the
sample based approach.

In the system we observe two stable solutions. The solution I is period-1 oscillation (it has the same period
of the excitation) of mass M with pendulum remaining in the hanging down position. The second possible
orbit (solution II) is period-2 solution (its period is double than that of the excitation) in which both massM
and pendulum performs oscillatory motion. At �rst, we consider the probability of reaching solution I from
random initial conditions. We perform 2.5×106 trials of direct numerical integration each time drawing the
initial conditions from the following ranges x ∈ [−2, 2], ϕ ∈ [−π, π], ẋ ∈ [−2, 2], ϕ̇ ∈ [−4, 4]. These ranges
ensure that all stable solutions can be reached and refer to the practically accessible initial conditions that
could be implied in the real world realization of the investigated system. The overall probability of reaching
solution I is 54.3% which corresponds to basin stability measure of this attractor. Hence, the second solution
has probability of reaching equal to 45.7%. Now, we want to investigate how this value change for di�erent
regions of the phase space.

One-coordinate histograms

Firstly, we consider how each particular coordinate in�uences the probability of reaching solution I. For
this purpose we calculate histograms for each generalized coordinate separately. Each time we use 42 equal
steps receiving on average 600 000 trials for each subset. In Fig. 17(a-d) we show how the probability of
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reaching solution I evolves with respect to coordinates x, ẋ, ϕ and ϕ̇ respectively. Each dot on the histograms
corresponds to the series of trials in which all initial conditions are random but for one initial condition given
on vertical axis we narrow down the range of drawing its value to 1

42 of the whole accessible range. Hence, we
see 42 discrete ranges which show the changes of probability as a function of one selected initial condition.
Panel (a) shows how the probability of reaching solution I depends on the initial value of x. We see that
there is no dominant trend and the value is scattered around the overall average probability. Hence, we
expect that the initial value of x can a�ect the structure of basins of attraction, but not its overall volume.
This is con�rmed by the sample 3D projections of the full basins of attraction, obtained for x0 = −2.0,
x0 = 0.0 and x0 = 1.0 presented in panels (a.1, a.2, a.3) respectively. Moreover, in our previous paper [8]
we present supplementary material video1 which revels the evolution of 3D projection of the phase space
for x ∈ [−2, 2].
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Figure 17: Histograms showing how the probability of reaching solution I changes with respect to four generalized coordinates
(a,b,c,d) supplemented by examples of 3D plots of basins of attraction.

Panel (b) refers to the in�uence of initial condition ẋ which is much less scattered.Thus, changes in initial
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value of ẋ should have minor in�uence on the basins structure and compactness. It is also visible in the
sample 3D plots (panels (b.1, b.2, b.3)) calculated for ẋ0 = −2.0, ẋ0 = 0.0 and ẋ0 = 1.0 respectively.

Panels (c) and (d) correspond to histograms calculated for ϕ and ϕ̇ respectively. In both plots we see
similar shape of histograms. The probability is scattered on both ends of the considered ranges of initial
conditions while in the middle there is clearly visible trend with the maximum around zero. Hence, we
expect that around zero value the basins have large volume (maximum along the histogram) and more
compact structure (clearly visible trend). Contrary, on both ends of the considered range we expect basins
with smaller volume and more complex structure (lower probability and large dispersion in the histogram).
These predictions are con�rmed both on the sample 3D projections - panels (c.1, c.2, c.3, d.1, d.2, d.3).
Animations showing full evolutions of the 3D basins of attraction can be found in the supplementary material
to our recent paper [8]. The presented results show that one coordinate histograms may indicate the changes
in the structure and volume of basins of attraction. We see that large dispersion along the histograms indicate
fractal structure of basins while clearly visible trends refer to more compact shapes of basins. Apart from
that, the proposed histogram plots can be used to detect the ranges of initial conditions for which we observe
minimum or maximum volume of the basin of attraction.

Two-coordinate density plots

In this section we consider 2D density plots showing how the probability of reaching solution I changes
with respect to two particular coordinates. To obtain the density plot we perform large number of trials with
random initial conditions. Then, we clusterize trials with respect to two initial conditions and for each group
we calculate the probability of reaching solution I. By that, we obtain drawings that are somehow squeezed
re�ections of phase space that can be interpreted similarly as 1D histograms but brings more information.
They are especially meaningful for mechanical systems because they are able to re�ect the in�uence of the
initial conditions of single degree of freedom (position and velocity). If we want to have the information how
other pairs of initial conditions in�uence the density we can easily plot such diagrams. Moreover 2D plot is
the limit of clear visualization method that enables convenient interpretation. The above reasons make the
proposed density plots an e�cient tool for the analysis of phase space structure.

In Fig. 18 we show 2D density plots obtained for the investigated system. In panels (a,b) we consider
initial conditions that refer to separated single degree of freedom. In panel (a) we show how the probability
is changing with varying x and ẋ. We see that for ẋ ∈ (−1.6, 1.4) the probability of reaching assumed
solution is much larger than outside this range. The same conclusion can be drawn based on 1D diagram.
The advantage of 2D plot is visible in the middle of the plot, where we clearly see that there is a narrow area
of small probability (blue colour) in the high probability range. The second considered degree of freedom
(ϕ, ϕ̇) is shown in panel (b) of Fig. 18. The plot is signi�cantly di�erent from the �rst one. We observe
a high probability in the center of plot and rapid decrease of probability outside this range. The highest
probability is marked with dashed line ellipse.
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Figure 18: 2D density plots presenting dependence of the overall probability of reaching solution I with respect to the initial
state of Du�ng oscillator (a) and pendulum (b). Panels (c, d) show basins of attraction calculated for points with minimum
(c) and maximum (d) probability marked in panel (a). The green and yellow color refer to basins of attraction of solutions I
and II respectively. Dashed ellipse refers to the region in ϕ and ϕ̇ plane with high probability of reaching solution I.

To present the advantage of 2D plots in panels (c) and (d) we show basins of attraction calculated for
�xes initial conditions of the Du�ng oscillator. The green and yellow colours refer to basins of attraction of
solutions I and II respectively. Panel (c) corresponds to the point from panel (a) with minimum probability
(x = −0.24, ẋ = 0.74) and panel (d) refers to the point with maximum probability (x = −0.18, ẋ = 1.70).
Comparing panels (c) and (d) we see that indeed the amount of yellow colour that refers to solution II basins
di�ers strongly. Moreover, on both plots we see unchanged range of high probability of reaching solution I
marked with the dashed line ellipse (the same area as in panel (b)). The above consideration shows that 2D
density plots can be e�ectively utilized to investigate the structure of the phase space in multidimensional
systems and provides additional knowledge over traditional presentation methods.
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5.2. Practical application

In this Section we one more time refer to the experimentally validated model of the yoke-bell-clapper
system described in Section 3.3. We analyse the structure of the phase space for the following set of
parameter values: Tmax = 230 [Nm], lr = −0.075 [m]. Analyzing Figs 8 and 16 we see that two stable
attractors coexist for that case. Both of them are falling clapper hence the collisions between the bell and
the clapper occur when they perform an anti-phase motion. The �rst attractor corresponds to asymmetric
falling clapper with one impact per period of motion (solution 6 or 7) and the second one to symmetric
falling clapper with two impacts per period - one on each side of the bell (solution 8). Assuming the ranges
of applicable initial conditions given by Eq. 11 we analyze the structure of the phase space.

Results are presented in Fig. 19 where the �rst three panels (a,b,c) refer to the relative probability of
reaching solution 6 or 7 and panels (d,e,f) placed in the lower row re�ect the results for solution 8. In the
�rst column we present the in�uence of initial angular position and velocity of the bell while in the second
column of the clapper. We see that to obtain the symmetric solution with two impacts per period (solution
8) we have to imply some initial de�ection of the bell and the clapper.

Figure 19: 2D density plots presenting dependence of the overall probability of reaching coexisting stable solutions with respect
to the initial state of the bell (a,d), the clapper (b,e) and initial de�ections of the bell and the clapper (c,f). The color scale is
presented at the bottom of the �gure.

It is also much easier to obtain precise initial de�ection than angular velocity. Hence, for practical
application, in the last column we plot how the relative probability depends on the initial de�ections of
the bell and clapper. The white triangles re�ect the geometrical boundaries of accessible initial states
of the system (as aforementioned the initial angular potions of bell and clapper must ful�l the relation
|ϕ10
− ϕ20

| < α, see Eq. 11). Panels (c,f) are of practical importance as they indicate that it is impossible
to reach symmetric solution without implying some speci�c initial state of the system or sophisticated
starting procedure.
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6. Conclusions

Recent rapid increase in computational power and ensuing development of parallel computing creates
immense opportunities for novel sample based methods of dynamical analysis. At �rst glance, these methods
seem complex and sophisticated as they need powerful numerical apparatus. Still, they enable to reproduce
the inherent uncertainty of perturbations and have numerous advantages which make them appropriate
especially for analysis of multistable systems.

The �rst is the fact that we are able to detect all possible solutions also hidden and rare attractors. This
feature is extremely important when analyzing systems with unknown number of possible stable solutions.
With sample based methods we are able to detect all solutions with basin stability greater than some
threshold that depends on the number of trials. We can create basin stability maps or two-dimensional
probability density plots to show ranges of stability and �nd parameter values that ensure the highest
possible basin stability measure. The presented results prove that sample based algorithm ensures precision
similar to classical methods (direct numerical integration, path-following) and the obtained results re�ect
the experimental data.

Secondly, we are able to investigate the ranges of stability in multiple parameters space including pa-
rameters mismatch and variation of parameter values. We can take into account the fact that values of
parameters are measured or estimated with some �nite precision and also that they can slightly change dur-
ing normal operation. We can extend the analysis by adding model imperfections or di�erent types of noise.
The obtained results enable to assess the robustness of solutions and estimate the risk of unwanted behav-
ior. Moreover, with sample based methods we can concurrently investigate dynamics in multiple parameters
space.

The last revealed application of the sample based approach is analysis of the phase space structure of
mulit-DOF dynamical systems. The proposed method enables to investigate the in�uence of particular
initial condition. The presented results show that the method enables to obtain additional knowledge of
the basin compactness and reveal regions in the phase space that have some speci�c features. Crucial
part of the approach is proposed presentation scheme that enables to overcome some limitations of the
currently know methods. Probability histograms are useful to analyze single initial condition and detect
ranges with maximum or minimum probability of reaching the solution of interest. Two dimensional density
plots correspond to squeezed re�ections of phase space and reveal the in�uence of given degree-of-freedom or
a pair of initial conditions. These plots are obtained assuming random initial conditions, hence they uncover
the overall in�uence of considered the initial condition or conditions.

The above advantages prove that sample based methods are e�cient tool that can be e�ectively utilized
to investigate the dynamics of wide range of dynamical systems and provide additional knowledge over
traditional methods.
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