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Abstrat

In this paper we present the bifuration analysis of the yoke-bell-lapper system whih orresponds to the biggest

bell �Sere Lodzi� mounted in the Cathedral Basilia of St Stanislaus Kostka, Lodz, Poland. The mathematial

model of the system onsidered in this work has been derived and veri�ed based on measurements of dynamis of

the real bell. We perform numerial analysis both by diret numerial integration and path-following method using

toolbox ABESPOL ([4℄). By introduing the ative yoke the position of the bell-lapper system with respet to the

yoke axis of rotation an be easily hanged and it an be used to probe the system dynamis. We found a wide

variety of periodi and non-periodi solutions, and examined the ranges of oexistene of solutions and transitions

between them via di�erent types of bifurations. Finally, a new type of bifuration indued by a grazing event - an

�impat adding bifuration� has been proposed. When it ours, the number of impats between the bell and the

lapper is inreasing while the period of the system's motion stays the same.

Keywords: Bells, nonlinear dynamis, impats, hybrid system, bifuration analysis, impat adding bifuration

1. Introdution

Bells have been musial and eremonial instruments with a very long history and well established role in a

ulture. They were invented in China and have been used all around the world [8℄. Today, their sound announes

and upgrades signi�ane of major events. Depending on the region bells are mounted in a number of di�erent ways

basing on loal ustoms and tradition. In Europe we have three di�erent harateristi mounting layouts: Central

European, English and Spanish [9℄. In Central Europe, bells usually tilt on their axis with maximum amplitude

of osillations below 90 degrees. In the English, system the amplitude of osillations is greater and bells perform

nearly a omplete rotations in both diretions. Conversely, in the Spanish system bells rotate ontinuously in the

same diretion. All these mounting layouts were developed throughout enturies based on experiene and intuition

of bell-founders and raftsmen. It is ommon that the bells are asted using asting moulds passed down from

father to son and so forth. Although the design of a bell, its yoke, lapper and a belfry has been being improved

over the years, their modelling and dynamial analysis is still a hallenging task.

The dynamis a yoke-bell-lapper system is omplex and di�ult to analyze due to its nonlinear harateristis,

repetitive impats and pieewise smooth nature of its exitation. In 19th entury Wilhelm Veltmann made a a �rst
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attempt to desribe mathematially the behaviour of the famous Emperor's Bell in the Cologne Cathedral [27, 28℄

by using a double pendulum to model the bell and the lapper. Heyman and Threlfrall [10℄ used a similar model

to estimate inertia fores indued by a swinging bell. The impoartant issue during yoke design is the knowledge

of loads reated by ringing bells. This an signi�antly improve the overall dynamis and reliability of the system

[23, 15, 1℄. The analysis of bells' sound is always performed via Finite Elements Methods [24, 12, 7℄, while in

modelling of their dynamis, there is a tendeny to use muh simpler hybrid dynamial models of the yoke-bell-

lapper system, e.g.[16℄. This model has been improved in our reent paper [19℄ based on the experimental studies

where parameters' values were determined from the measurements of the biggest bell in the Cathedral Basilia of

St Stanislaus Kostka, Lodz, Poland. Then, in [20℄ we foused on the desription of di�erent ringing shemes and

their oexistene of stable solutions. In the very reent work [3℄, we show the method to prepare the model of

the yoke-bell-lapper system with external exitation for ontinuation in ABESPOL toolbox [4℄ and we show the

bifuration diagram for varying exitation's torque.

In this paper, we present the bifuration analysis taking the yoke geometry as a bifuration parameter. Let us

�rst brie�y disuss possible senarios of stabilization and destabilization of periodi solutions in the ontext of non-

smooth dynamis, whih has witnessed a rapid development reently. The bifuration theory of smooth systems is

mature and we know all bifurations with o-dimension 1 and 2 [32, 13℄. In the smooth systems we an distinguish

the following typial loal bifurations: period doubling, Neimark-Saker, pithfork and saddle-node. The �rst

three bifurations ause destabilisation of the urrent periodi solution and emergene of new a periodi solution

with di�erent features. The exeption is the saddle-node bifuration, whih takes plae when stable and usable

orbits ollide and annihilate eah other. In the non-smooth systems, we observe all aforementioned bifurations and

additionally grazing, period adding, orner and sliding bifurations [2, 6, 18, 21, 25, 14℄. Nevertheless, we still do not

have a full atalogue of non-smooth bifurations. In our investigations, we have foused on the grazing bifuration

[31, 22, 29, 11℄ and grazing indued bifurations [17, 30℄. Grazing bifurations may indue di�erent events suh as:

a sudden loss of stability or existene of the orbit, a reation of new periodi orbit or multiple orbits, a hange in

the period of the system's motion or reation of a haoti attrator. Most of known non-smooth bifurations heve

been deteted in the simple systems, where one an perform analytial investigations. However, there is a large

group of omplex systems whih annot be analysed analytially and for whih one an expet new non-smooth

bifurations. The main reason for that is the lak of easy, aessible tools to analyse the omplex non-smooth

systems via path-following. Reently, new path-following toolboxes TC-Hat [26℄, Coo [5℄ and ABESPOL [4℄ have

been developed. Thanks to suh software the analysis of non-smooth systems is now possible even in omplex ases

like yoke-bell-lapper system, where we have multiple nonlinearities.

In this paper, we onsider the appliation of the ative yoke whih let us hange the position of the bell-lapper

system in respet to the axis of rotation of the yoke. We show its in�uene on the dynamial response of the system

and present the existene of several periodi and non-periodi solutions, the ranges of oexistene of solutions and
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transitions between them via di�erent bifuration senarios. Finally, we introdue a new kind of bifuration indued

by a grazing event - an �impat adding bifuration�.

The paper is organized as follows. In Setion 2 we desribe the hybrid dynamial model of the hurh bell and

introdue the ative yoke. The results of the path-following are shown in Setion 3. In Setion 4 the onlusions

are drawn.

2. Physial and mathematial models

The hybrid dynamial model of the yoke-bell-lapper system onsidered in this paper has been desribed in detail

in our previous publiation [19℄. To alibrate the model and determine its parameters we have performed detailed

measurements of the bell named The Heart of Lodz (the biggest bell in the Cathedral Basilia of St Stanislaus

Kostka in Lodz). The model was then tuned and validated by omparing the results of numerial simulations with

the data olleted during a series of experiments proving to be a reliable preditive tool and apable to simulate the

behaviour of a parameters. The next subsetions brie�y desribe the model and present the in�uening parameters.

2.1. Geometry of the yoke-bell-lapper system

The developed mathematial model is based on the analogy between freely swinging bell and the motion of the

equivalent double physial pendulum. The �rst pendulum has �xed axis of rotation and models the yoke together

with the bell that is mounted on it. The seond pendulum is attahed to the �rst one and imitates the lapper. Figs

2.1 (a,b) show shematis indiating the position of the rotation axes of the bell o1, the lapper o2 and presenting

parameters involved in the model. For the sake of simpliity, heneforth, the term �bell� is used for the bell and its

yoke, whih is treated as one solid element.

L

lc0 o1

o2

(b)

φ2

φ1

2α
M,Bb0

m,Bc

l

o2

o1

Cb

(a)

Cc

l <0r

(c)

l <0

rl =0

rl >0

0

lcr

Lr

rl >0

o2

o1

(d)

l <0rl <0

o1

o2

lcr

Lr

Figure 2.1: Shematis of the physial model in di�erent planes to show its geometry and kinematis.

The model has eight physial parameters: L0 desribes the distane between the rotation axis of the bell and

its entre of gravity (point Cb), l is the distane between the rotation axis of the lapper and its entre of gravity

(point Cc). The distane between the bell's and the lapper's axes of rotation is given by lc0. The mass of the bell
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is desribed by M , while Bb0 haraterizes the bell's moment of inertia referred to its axis of rotation. Similarly, m

desribes the mass of the lapper and Bc stands for the lapper's moment of inertia referred to its axis of rotation.

Parameter lr is used to desribe the modi�ations of the yoke, as it is presented in Fig. 2.1(b-). The lr de�nition is

explained in detail in our previous paper [20℄, where lr = 0 refers to the shape of original yoke used in the Cathedral's

bell. If the entre bell's of gravity is lowered with respet to its axis of rotation, lr < 0, otherwise lr > 0. The

hange of the yoke design given by the value of lr a�ets other parameters. Therefore, in the mathematial model,

the following parameters that desribes the system with the modi�ed yoke are used:

L = L0 − lr, lc = lc0 − lr, Bb =
(

Bb0 −ML2

0

)

+ML2. (2.1)

A planar o-ordinate system is used as shown in Fig.2.1 (a), where the angle between the bell's axis and the

downward vertial is given by ϕ1 and the angle between the lapper's axis and downward vertial by ϕ2. Angular

parameter α desribes the impat ondition as follows:

|ϕ1 − ϕ2| = α. (2.2)

Synonymously, ontat between the bell and the lapper ours when a relative angular displaement between

the bell and the lapper is equal to α.

2.2. Mathematial model

In this setion the mathematial model used to simulate dynami responses of the investigated yoke-bell-lapper

system is presented. Lagrange equations of the seond type are employed to derive two oupled seond order ODEs

that desribe the motion of the onsidered system (the full derivation an be found in [19℄):

(

Bb +ml2c
)

ϕ̈1+mlclϕ̈2 cos (ϕ2 − ϕ1)−mlclϕ̇
2

2
sin (ϕ2 − ϕ1)+ (ML+mlc) g sinϕ1+Dbϕ̇1−Dc (ϕ̇2 − ϕ̇1) = T (ϕ1),

(2.3)

Bcϕ̈2 +mlclϕ̈1 cos (ϕ2 − ϕ1) +mlclϕ̇
2

1
sin (ϕ2 − ϕ1) +mgl sinϕ2 +Dc (ϕ̇2 − ϕ̇1) = 0, (2.4)

where g stands for gravity and T (ϕ1) desribes the e�ets of the linear motor propulsion. The motor exites the

bell - when its de�etion from vertial position is smaller than π/15 [rad] (12o). The torque generated by the motor

T (ϕ1) is given by the pieewise formula:

T (ϕ1) =































Tmax sgn(ϕ̇1) cos (7.5ϕ1) , if |ϕ1| ≤
π
15

0, if |ϕ1| >
π
15

(2.5)
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where Tmax is the maximum torque. Although, the above expression is not fully aurate re�etion of the e�ets

generated by the linear motor it is able to reprodue the harateristis of the modern bells' driving mehanisms

[19℄.

We use a disreet impat model. If Eq. 2.2 is ful�lled, the numerial integration proess is paused. Then,

simulation is restarted with updated initial onditions. The bell's and the lapper's angular veloities are swaped

from the values before the impat to the ones after the impat. The angular veloities after the impat are obtained

by taking into aount the energy dissipation and the onservation of the system's angular momentum that are

expressed by the following formulas:

1

2
Bc (ϕ̇2,AI − ϕ̇1,AI)

2
= k

1

2
Bc (ϕ̇2,BI − ϕ̇1,BI)

2
, (2.6)

[

Bb +ml2c +mlcl cos (ϕ2 − ϕ1)
]

ϕ̇1,BI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,BI =

[

Bb +ml2c +mlcl cos (ϕ2 − ϕ1)
]

ϕ̇1,AI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,AI

(2.7)

where index AI stands for �after impat�, index BI for �before impat� and parameter k is the oe�ient of energy

restitution and in our simulations we assume k = 0.05 [−] [19℄.

The mathematial model ontains eleven parameters that have the following values: M = 2633 [kg], m =

57.4 [kg], Bb = 1375 [kgm2], Bc = 45.15 [kgm2], L = 0.236 [m], l = 0.739 [m], lc = −0.1 [m] and α = 30.65o =

0.5349 [rad], Dc = 4.539 [Nms], Db = 26.68 [Nms], Tmax = 230 [Nm]. Eqs 2.3 and 2.4 together with the impat

model reate a hybrid dynamial system.

3. Bifuration analysis of periodi orbits

In this Setion typial bifuration senarios for transitions between di�erent periodi solutions are presented. As

mentioned in the desription of system parameters, in pratie, only the design of the yoke and driving mehanism

an be altered. These hanges are desribed by lr and Tmax. In [20℄ we investigated the in�uene of these parameters

and developed ringing sheme diagrams that show whih working regime will be ahieved for di�erent lr and Tmax

values (starting from zero initial onditions). Using diret numerial integration the ranges of parameters values

that ensure that the required type of behaviour will be reahed when starting from equilibrium state are identi�ed.

In [3℄ we presented the path-following analysis of periodi solutions, where the amplitude of driving fore Tmax is

a bifuration parameter assuming onstant geometry of yoke.

In this artile, the in�uene of the geometrial parameter lr desribing the yoke design is investigated. Our

analysis reveals a rih bifuration senarios leading to and emerging from periodi orbits of di�erent type. We

analyse stable and unstable responses, and show transitions between di�erent periodi regimes. The undertaken

analysis is performed by both a diret numerial integration and a path-following methods. The path-following
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analysis was arried out with ABESPOL toolbox based on Coo [4℄. The implementation of the hybrid model

for ontinuation in ABESPOL was a hallenging task and required a lot of e�ort. Proess of implementation is

desribed in detail in our previous paper [3℄, where we present operation modes and disontinuity events that we

use when running ontinuation.

In Fig. 3.1 two bifuration diagrams are shown with the bifuration parameter (lr) on the horizontal axis and on

the vertial one the angular position of the lapper (ϕ2) reorded when ϕ1 = 0 and ϕ̇1 > 0. The results presented

in panel (a) are obtained by a diret numerial integration while ones on panel (b) by path-following method. Panel

(a) gives an overview of stable solutions as this �gure is obtained by merging four bifuration diagrams that are

depited with di�erent olours. Green dots orrespond to omputation from lr = −0.3 [m] to lr = 0.2 [m], purple

dots have been obtained by integration in reverse diretion. In addition blue and yellow dots are the result of two

additional trials, eah starting from di�erent initial onditions.

The results obtained using diret numerial integration were used as initial guesses for path-following analysis,

whih results were obtained by ABESPOL and are shown in Fig. 3.1 (b). A ontinuation enables to detet

bifuration points, determine their type and investigate evolution of unstable orbits. However in this study, only

solutions that have a known physial meaning are onsidered, hene unstable branhes born at grazing bifurations

were disregarded. Eleven di�erent periodi solutions were deteted, whih are marked with a di�erent olour and

given a number.

For low values of geometrial parameter lrǫ (−0.3, −0.2522) [m], we observe a non-impating solution marked

as (1) and shown with a blak solid line. In that range, the yoke geometry is suh that the lapper annot reah

the bell shell and there is no ontat. This solution remains stable with the inrease of lr until the grazing-indued

bifuration ouring at lr = −0.252 [m] (vertial line in Fig. 3.1). In that point, the non-impating solution loses

its stability and six di�erent unstable solutions (2, 3, 4, 6, 7, 8) are born.

In Fig. 3.2 a zoom-up of the bifuration diagram around that grazing-indued bifuration point (lr = −0.252[m])

is presented. In the plot one an see six unstable branhes that meet in the bifuration point. Solution (2) is a

period-5 symmetri solution with two impats. This means that for �ve periods of bell's osillations, whih is

one full period of this solution, two impats (one on eah side of the bell) are observed. This solution is initially

unstable but stabilizes through a saddle-node bifuration (lr = −0.2522 [m]) and remains stable until grazing point

at lr = −0.2446[m]. Solutions (3) and (4) are both asymmetri with one impat per two periods of bell's osillations.

These solutions stabilize at a period doubling bifurations at lr = −0.2403 [m] and destabilize in grazing points at

lr = −0.2186 [m]. Beause of the asymmetry, the destabilization ours at grazing on the right hand boundary for

solution (3) and on the left hand boundary for solution (4). Solutions 6, 7, 8 are also born in this bifuration but

their ranges of existene is muh wider.

In Fig. 3.1(a) we observe the large range (lr ∈ 〈−0.2446, 0.1473〉 [m]) of non-periodi behaviour for whih the

bell and the lapper ollide in a haoti manner. Within the haoti range a window with period-3 symmetri
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Figure 3.1: Bifuration diagrams of the lapper angle ϕ2 as a funtion of yoke geometry parameter lr. Results were obtained by a diret

numerial integration (a) and path-following (b) for �xed amplitude of exitation Tmax = 230 [Nm] and lr ∈ 〈−0.3, 0.2〉 [m]. Di�erent
types of solutions are marked with di�erent numbers and olours. Solid urves mark stable solutions, where dashed ones unstable parts

of branhes. Symbols are used to distinguish di�erent bifurations (see legend). Vertial lines mark the position of bifuration points

in whih the stability hanges.
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Figure 3.2: Zoom-up of bifuration diagram shown in Fig. 3.1 that shows in details subritial pithfork bifuration that ours for

lr = −0.252 [m]. Di�erent types of solutions are marked with di�erent numbers and olours. Solid urves mark stable solutions, where

dashed ones unstable parts of branhes. Symbols are used to distinguish di�erent bifurations (see legend).

solution (5) with two impats (one on eah side of the bell) was found. This solution is stable in the range

lr ∈ 〈−0.2006, 0.1703〉 [m]. For lr = −0.1703 [m] its destabilization ours at a grazing event (simultaneously on

both boundaries) while for lr = −0.2006 [m] superritial pithfork bifuration ours - spei�ally a symmetry

breaking bifuration. In that point two new asymmetri solutions are born. These solutions are stable in a very

narrow range lr ∈ 〈−0.2011, −0.2006〉 [m] (for lr = −0.2011 [m] grazing ours).

After the haoti range two stable asymmetri solutions (6) and (7) an be observed. These are asymmetri

attrators with period-1 and one impat per period (on the right hand boundary for solution (6), and on the left

hand boundary for solution (7)). Branhes (6) and (7) are reated at a grazing indued bifuration that ours for

lr = −0.252 [m] (see Fig. 3.2). Initially, both solutions (6) and (7) are unstable. With the inrease of lr value a

period doubling bifuration ours for lr = −0.1473 [m]. After this point solutions (6) and (7) beome stable and

remain suh until the grazing point is reahed at lr = −0.042 [m].

The last branh that is reated in the grazing event at lr = −0.252 [m]) orresponds to solution (8). It

is a symmetri period-1 attrator with two impats per period (one at eah side). Suh behaviour is ommonly

enountered in pratie and often alled symmetri falling lapper. Initially, solution (8) is unstable until subritial

pithfork bifuration (symmetry breaking) that ours at lr = −0.086 [m]. After this point, solution (8) remains

stable up to lr = 0.148 [m] for whih it is destabilized via grazing on both boundaries. This solution is stable in a

partiularly wide range of lr ∈ 〈−0.086, 0.148〉 [m]. It is of pratial importane and indiates that this solution an

be fairly easily ahieved using di�erent yoke designs (di�erent geometry). Moreover, for lr ∈ 〈−0.086, −0.042〉 [m]

a range where symmetri (8) and asymmetri (6,7) solutions o-exist is observed. Therefore, it is possible to design
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the yoke so that the bell an work in two di�erent regimens. In suh ase, di�erent solutions an be reahed by

applying, for example, di�erent starting proedures.

3.1. Impat adding bifuration

Grazing bifuration that is observed for lr = 0.148 [m] reates a solution (9) (see Fig. 3.1). It is a period-1

attrator with four onseutive impats - on eah side of the bell's shell two impats our immediately one after

another. Suh behaviour is alled �double kiss�. Initially solution (9) is unstable. It stabilizes at a saddle-node

point (lr = 0.1346 [m]). When further inreasing lr similar bifuration senario ours. This sequene of reurrent

grazing events and saddle-node bifurations is shown in detail in Fig. 3.3. Firstly, one an see a grazing event

in whih period-1 solution (10) is reated with six onseutive impats - on eah side of the bell three impats

our immediately one after another. This means, that on eah side we have one more impat then in solution (9).

Similarly to solution (9) also solution (10) is initially unstable and stabilizes at a saddle-node bifuration. Then,

with the inrease of lr value, similar bifuration sequene is repeated. Solution (11) with eight impats is reated

(four on eah side) and stabilized in a saddle-node bifuratoin. It is important to notie, that in the above desribed

bifuration senario we do not observe any hanges of the overall period of attrators (the period inreases only

due to the inrease of length lr). This means that eah new attrator reated in an �impat adding bifuration"

ontains more impats has the same period.

Phenomenon desribed above is repeatable and results in a sequene of reurrent hanges in attrators. Although

the hange in the phase portrait of an attrator is minor (see Fig. 3.4) these solutions an be easily distinguished

by listeners beause of di�erent number of impats. Up to our knowledge, suh senario of reurrent bifurations

has not been desribed yet. Still, it is harateristi for hybrid dynamial systems similar to the one investigated

in the paper. Due to the type of attrator hanges we name this grazing event as �impat adding bifuration�.

The far right part of the bifuration diagram obtained by integration is the sliding motion (Fig. 3.1(a)). It

annot be analysed using the path-following method beause the major part of this solution is the stik phase (the

bell and the lapper are in ontinuous ontat). In our ontinuation toolbox suh behaviour would be onsidered

as a series of impats and in�nite number of segments should be introdued to repliate the stiking of the bell

and the lapper. Alternatively, the ondition for stiking and the new segment for ontinuation ould be de�ned

to sove this problem. Still, this would make our model surjetive and impede the analysis. Hene, we present only

the results from diret numerial integration.

3.2. Phase portraits of the analysed solutions

Fig. 3.4 presents the phase portraits for all eleven solutions analysed in the paper. For eah solution there are

two panels (a) and (b) named with its number. Panels (a) present phase portraits with the angular displaement

of the lapper (ϕ2) versus the displaement of the bell (ϕ1), while panels (b) present phase portraits of the lapper

itself (veloity (ϕ̇2) versus displaement (ϕ2)). The gaps in panels (b) emerge as an outome of the hybrid nature

of the dynamial model. To mark the impat onditions, on eah panel (a) we plot two straight lines between whih
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Figure 3.3: Zoom-ups of of bifuration diagram shown in Fig. 3.1. Panel (b) shows in details sequene of period adding bifurations

that is magni�ed in panel (d). Panels (a) and () show the hanges in the overall period of attrators. Di�erent types of solutions are

marked with di�erent numbers and olours. Solid urves mark stable solutions, while dashed ones unstable parts of branhes. Symbols

are used to distinguish di�erent bifurations (see legend). Vertial lines mark the position of bifuration points in whih the stability

hanges.
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the phase portrait exists. Impat ours when the trajetory reahes one of the impat ondition lines. For a better

understanding of these �gures, as the referene we will now desribe the solution from branh (8) shown in panels

8(a,b). It is an attrator with two impats per one period of motion. By analysing panels 8 (a,b) we see that the

attrator is symmetri with respet to the origin of the oordinate system. Hene, we observe idential ollisions

on both sides of the bell. On panel 8(b) we observe two jumps in the trajetory trae that refer to impats - one at

eah side of the bell, also in panel 8(a) we see that the trajetory touhes both lines, hene the impat ondition is

full�lled two times.

4. Conlusions

Bells are simple musial instruments whih exhibit rih variety of dynamial behaviours. Ringing sheme depends

basially on the design of the yoke and propulsion whih usually follow loal traditions. Still, to design the yoke

one needs to analyze the dynamis of the yoke-bell-lapper system and determine the ranges of parameters with

single solution. In the paper, we fous on the in�uene of the yoke geometry desribed by parameter lr. Results

from both diret numerial integration and the path-following method are presented. The path-following analysis

reveals unstable solutions and enables to detet the bifurations that our along them.

From the mathematial point of view the investigated model is nonlinear, non-smooth and pieewise smooth,

hene it has omplex dynamis. An important feature of the investigated system is its spei� pieewise foring

that ensures that the bell always osillates with its natural frequeny.

Complete bifuration sequenes, whih are harateristi for hybrid dynamial systems are presented and dis-

ussed. Typial bifurations inluding grazing, saddle-node, pithfork and period doubling bifurations were de-

teted. The ranges of stability for eah solution were de�ned with a detailed explanation of how the stability

hanges.

The main �nding from the study is a new kind of bifuration indued by a grazing event - an �impat adding

bifuration�. When �impat adding bifuration" ours, the number of impats inreases while the period attrator

persists the same. It is a new type of phenomenon that persists in the investigated model. Similar bifuration

senarios an our in a wide range of hybrid systems, espeially for ones with similar foring similar to the one

investigated in this work.
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Figure 3.4: Phase portraits of the displaements of the bell and the lapper (panels (a)) and displaement versus veloity of the lapper

(panels (b)). Numbers of solutions orrespond to the number of branhes of stable periodi attrators marked in Figs 3.1, 3.2 and 3.3.
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