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We propose a novel technique to analyze multistable, non-linear dynamical systems. It enables to characterize
the evolution of a time-dependent stability margin along stable periodic orbits. By that, we are able to indicate
the moments along the trajectory when the stability surplus is minimal and even relatively small perturbation
can lead to a tipping point. We explain the proposed approach using two paradigmatic dynamical systems,
i.e. Rössler and Du�ng oscillators. Then, the method is validated experimentally using the rig with double
pendulum excited parametrically. Both numerical and experimental results reveal signi�cant �uctuations
of sensitivity to perturbations along the considered periodic orbits. The proposed concept can be used in
multiple applications including engineering, �uid dynamics, climate research and photonics.

Multistability is commonly met in dynamical sys-

tems originating from various disciplines includ-

ing control engineering, networks, �uid dynam-

ics, biology, photonics, neurobiology and nonlin-

ear dynamics. Due to the coexistence of stable

attractors, we observe sudden changes in dynam-

ical response. An important real-life example is

a circadian clock. Recent studies suggest that it

is far safer to undergo heart surgery in the after-

noon than in the morning. Also, heart attacks

and strokes are more probable in the morning.

Those events take place in a di�erent moment

of a circadian clock, hence we can say that in

the afternoon the stability margin is larger, while

in the morning it shrinks and our body is more

peril to dangerous incidents. The sencond ex-

ample are systems with control which are com-

monly met in all �elds of physics and engineer-

ing. The costs of control can be minimized by

applying a controlling impulse in the appropriate

moment. In mechanical and civil engineering to

improve reliability and work safety of machines

and structures, we should be able to detect parts

of the working regime that determine its robust-

ness. We propose a novel technique to character-

ize the time-dependence of stability margin along

a stable trajectory. For that purpose, we analyze

the changes in the minimum distance between the

trajectory and the closest tipping points. We pro-

pose di�erent measures to quantify this distance

and the stability surplus. Our method enables to

expand the knowledge about the overall structure

and compactness of the phase space of dynamical

systems. The method implements a straightfor-

ward sample-based analysis and can be applied

to a wide range of dynamical models. Moreover,
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one can utilize di�erent stability margin indica-

tors that best suit the considered phenomena. We

explain the approach using two paradigmatic dy-

namical systems and verify the robustness of the

technique with an experimental investigation of

a double pendulum excited parametrically. Both

numerical and experimental results reveal signif-

icant �uctuations of sensitivity to perturbations

along the considered attractors which proves the

usefulness of the method.

I. INTRODUCTION

Multistability is commonly met in dynamical systems
originating from various disciplines including mechani-
cal, civil and control engineering, �uid dynamics, biol-
ogy, photonics and statistical physics. Due to the coex-
istence of stable attractors, we observe sudden changes
in dynamical response. However, all dynamical stability
measures refer to the whole trajectory or one particular
moment of time. Thus, they miss a crucial property of
all dynamical systems: the existence of time-dependent
susceptibility to perturbations along the orbit. Due to
this feature, a given perturbation may or may not lead
to a tipping point mainly depending on when it occurs.
The idea is schematically presented in Fig. 1. The ball
rolls along the grooved track, so its motion is locally sta-
ble. However, we see that in position 1 the ball is much
more likely to reach the tipping point and jump to an-
other regime than in position 2. Thus, it is extremely
important where along the orbit a perturbation occurs.
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FIG. 1. Schematic presentation of the di�erent susceptibil-
ity to perturbations along the orbit. The ball rolls around
the track. This solution is asymptotically stable. Depend-
ing on the position of the ball reaching tipping point is more
(position 1) or less likely (position 2).

Currently known methods provide the knowledge
about a local stability of solutions of a dynamical system.
The stability of equilibria is de�ned using eigenvalues18.
The Floquet theory let us calculate the stability of pe-
riodic solutions13. In case of quasi-periodic motion it
is a more challenging task. Analytically we can deter-
mine the stability in simple cases, but with the support
of numerical methods the analysis can be done for all
systems9,12,14. In the aforementioned cases, the stability
is calculated only in a close neighborhood of the consid-
ered orbit. But when a multistable system is subjected
to perturbations, it can evolve to a di�erent coexisting
solution. Thus, we should gain better insight on stabil-
ity in a wider range of the phase space, which can be
achieved by analysing the basins of attraction3,10,32.

For systems with two dimensional phase space, basins
of attraction show all solutions as the behavior of the sys-
tem depends only on two initial conditions. Thus, in such
systems we can perform a straightforward analysis and
obtain detailed information about the phase space struc-
ture. When the phase space has three or more dimen-
sions, we can just look into two-dimensional cuts of the
multi-dimensional phase space. To overcome this prob-
lem some new methods of analysis have been developed.
Thompson et. al.19,30,31 proposed the concept of mon-
itoring erosion of basins of attraction using a Poincar'e
map. Also, Rega and Lenci developed this concept and
introduce di�erent measures20,21,26 which enable to as-
sess the structure of the basins of attraction. Still, these
methods provide measures for the whole solutions but do
not describe the evolution of stability margin along the
orbit. Apart from that, due to the two-dimensional pre-
sentation limit of basins of attraction these methods are
hard to be applied for high-dimensional systems. The
method �basin entropy� proposed by Daza et. al.7,8, pro-
vides an e�cient algorithm to test the structure of basins
of attraction and obtain information about its fractality.

In this paper we propose a sample-based mathod that
is paradigmatically simmilar to �basin stability� measure
developed by Menck et. al.24. It enables to quantify
stability basing on the probability of reaching a given

attractor from random initial conditions. To estimate
basin stability, one has to perform a signi�cant number
of Bernoulli trials and classify the �nal solution reached
in each trial. This suprosingly simple quanti�er has been
already utilized in numerous applications. First paper
that use this idea shows the analysis of the synchroniz-
ability of Watts�Strogatz networks consisting of paradig-
matic Rössler oscillators24. In 28 the relationship be-
tween stability against large perturbations and topologi-
cal properties of a power transmission grid has been anal-
ized. The main advantage of the proposed algorithm is
that it can be applied during live operation of a power
grid to increase safety of the network. Then, the basin
stability method has been used to identify three mecha-
nisms which create the circulating power �ows6. Addi-
tionally, the problem of e�ciency increase of power grids
has been considered with basin stability method in few
more studies1,2,15,16,27

The basin stability is also an e�cent tool to an-
lyze synchronization23 or investigate the explosive transi-
tions between synchronous and non-synchronous states33

in large networks of oscillators. It can be also used
to consider synchronized state in time-varying complex
networks17. The interesting application of the basin sta-
bility method to systems with time delay has been pre-
sented in 22 and to piecewise and discontinuous systems
(Amazonian vegetation model25, externally forced oscil-
lator with impacts4 and system with dry friction11).

We have recently proposed an extension of this
method4,5, where additionally to initial conditions, we
draw the values of system parameters. Such approach
let us include in the analysis the uncertainty of param-
eters or investigate systems with varying parameter val-
ues. Nevertheless, all aforementioned methods do not
take into account the changes of basins during system
time evolution.

In this paper we include the time evolutions of the
phase space structura and propose a robust sample-based
method to characterize the time-dependent susceptibility
to perturbations. With the method we can identify cru-
cial parts along the orbits where we are closest to tipping
points and even small perturbation can induce a sudden
event. The proposed method let us detect changes in
the distance to the closest margin of stability, hence all
points that in�uence the phase space structure are taken
into account and can be detected. The method can be
applied to a wide range of dynamical models and one
can utilize di�erent stability margin indicators that best
suit the considered phenomena. We explain this tech-
nique using two paradigmatic dynamical systems, i.e. the
Rössler (autonomous) and Du�ng (non-autonomous) os-
cillators. The evolution of an autonomous system is time-
invariant, while for a non-autonomous oscillator the re-
sulting response is governed by a time-dependent func-
tion. Hence,for the two considered cases we use two dif-
ferent approaches. However, in both models we indeed
�nd a volatility of susceptibility to perturbations. Fi-
nally, the robustness of the technique is validated exper-
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imentally for a double pendulum excited parametrically.
Our investigations con�rm di�erent sensitivity to pertur-
bations along the considered attractors which proves the
usefulness of the method.

II. COMPUTATIONAL ALGORITHM

We propose a new method to describe the stability
surplus along asymptotically stable periodic attractors.
Instead of indicating the properties of the whole solution
using an overall measure, we characterize the stability
margin along the orbit - within one full period of motion.
For that purpose, we analyze the changes in the minimum
distance between the point on the orbit and the closest
tipping point given as the adjacent boundary of the basin
of attraction. We need a quantitative measure, such as
an Euclidean distance in the phase space, the di�erence
in the energy level or di�erent speci�c quantity related
to the investigated phenomenon. Analyzing the changes
of this measure one can indicate the parts of the stable
periodic orbit which are �more� or �less� susceptible to
perturbations and �nd moments of the orbit where we
are closest to a tipping point.
In the algorithm we use the minimum Euclidean dis-

tance in the phase space between the current position
on the attractor and the boundary of its basin of at-
traction. The proposed concept is general and can be
applied for a wide range of dynamical systems. How-
ever, to maintain the physical meaning of the results, we
should apply di�erent procedures for autonomous and
non-autonomous systems. The reason for this will be
explained using archetypal 2-dimensional systems.
Let us assume, that the considered system is multi-

stable and has a periodic solution and is given by the
coordinates (x, y). Two points (x1, y1) and (x2, y2) be-
long to the considered periodic attractor of period 2π pre-
sented in Fig. 2. At the time t0 the system is in the point
(x1, y1) and we perturb it, so that it jumps to (x2, y2).
If the system is autonomous (Fig. 2 (a)), it will continue
the motion along the attractor starting from (x2, y2) and
the only e�ect of the perturbation is a shift in the phase.
But, if the considered system is non-autonomous (Fig. 2
(b)) after the perturbation the system can reach a dif-
ferent attractor. Therefore, in non-autonomous systems
the perturbation has to be considered in the time domain,
whereas for autonomous systems we only care about the
state of the system after the perturbation. We apply a
sample-based approach to analyze e�ects of random per-
turbations along an attractor, hence we must di�erenti-
ate the procedure for autonomous and non-autonomous
systems.

A. Autonomous systems

The considered n-dimensional autonomous system is
given as:

FIG. 2. Presentation of the exemplary periodic attractor of
a 2-dimensional autonomous (a) and a non-autonomous (b)
system. Both points (x1, y1) and (x2, y2) belong to the at-
tractor. The black arrows indicate the e�ects of perturbation
that occurs at time t0.

dQ

dt
= F (Q) , (1)

where Q = (q1, q2, ... , qn) is a vector of generalized co-
ordinates that describes the state of the system. Let
us assume that the system has a stable periodic attrac-
tor A and at least one di�erent coexisting attractor. A
has period T and can be presented as a curve in the n-
dimensional Euclidean phase space. The length of this
curve is given by the following formula:

L(A) =

ˆ T

0

|F (Q)|dt. (2)

Then, to characterize the stability margin along A, we
perform the following steps should be applied:

1.: Discretize the investigated orbit into k segments of
equal length L(A)/k.

2.: For each segment mark down the state of the system
in the middle of this segment receiving k vectors(
qi1, q

i
2, ... , q

i
n

)
for i = 1, 2, ... , k.

3.: Perform a series ofm Bernoulli trials of direct numer-
ical integration. In each trial draw the values of the
initial conditions and check if the system reaches A
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or a di�erent attractor. After each trial note the
values of the initial conditions and whether A was
reached.

4.: For each segment �nd the minimum Euclidean dis-
tance between its middle state and the initial con-
ditions leading to a di�erent attractor. By that,
for each segment i calculate the estimator Di of
the minimal distance between the attractor and the
adjacent boundary of its basin of attraction.

The above procedure is presented schematically in Fig.
3 on the basis of a 3-dimensional autonomous system.
Panel (a) shows a periodic attractor and the sample
segments marked with di�erent colors. We also in-
dicate points that represent the states of the system
in the middle of each segment given by the vectors(
q11 , q

1
2 , q

1
3

)
,
(
q21 , q

2
2 , q

2
3

)
, etc. In panel (b) we present

the 3-dimensional projections of the basins of attraction
calculated around the middle point of the �rst segment(
q11 , q

1
2 , q

1
3

)
- in the planes q1 − q2, q2 − q3 and q1 − q3.

In panel (c) we show the zoom up around the point(
q11 , q

1
2 , q

1
3

)
and the minimum distance from that point

to the adjacent boundary of its basin of attraction given
by the measure D1.

B. Non-autonomous systems

The considered n-dimensional non-autonomous system
is given as:

dQ

dt
= F (Q, t) , (3)

where Q = q1, q2, ... , qn is a vector of generalized coordi-
nates that describes the state of the system. This system
has a stable periodic attractor A and at least one dif-
ferent coexisting attractor. A has period T and can be
presented as a curve in n-dimensional Euclidean phase
space. The length of this curve is given by the following
formula:

L(A) =

ˆ T

0

|F (Q, t)|dt, (4)

Then, to characterize the stability margin along attrac-
tor A the following steps should be applied:

1. Discretize the investigated orbit into k segments of
equal length L(A)/k.

2. For each segment mark down the initial time ti0 and
state of the system in the middle of the segment
receiving k vectors

(
ti0, t

i, qi1, q
i
2, ... , q

i
n

)
for i =

1, 2, ... , k, where ti0 = tmodT and ti = tmodT .

3. Perform a series of m Bernoulli trials of direct nu-
merical integration. In each trial draw the values

of the initial conditions and the initial time t0 from
the range [0, T ]; then check if the system reaches
A or a di�erent attractor. After each trial note the
values of initial conditions, initial time and whether
A was reached.

4. Divide all trials into k groups basing on the ini-
tial time t0. The trial belongs to group i if t0 ∈[
ti0, t

i+1
0

]
for i = 1, 2, ... , k − 1,and t0 ∈

[
tk0 , T

]
for i = k.

5. For each segment �nd the minimum Euclidean dis-
tance between its middle state and the initial condi-
tions leading to a di�erent attractor. During analy-
sis of segment i consider only trials that belong to i
group. By that, for each segment i we calculate the
estimator Di of the minimal distance between the
attractor and the adjacent boundary of its basin of
attraction.

The above procedure is presented schematically in Fig.
3 on the basis of a 2-dimensional non-autonomous sys-
tem. In panel (d) we show the phase portrait of A and
sample segments marked with di�erent colors. We indi-
cate points that represent the states of the system in the
middle of each segment given by the vectors

(
t1, q11 , q

1
2

)
,(

t2, q21 , q
2
2

)
, etc. In panel (e) we present the attractor in

3-dimensional view including time. This enables to show
the part of the phase space that includes the initial con-
ditions belonging to the �rst (red) and the second (blue)
group of trials. Panel (f) schematically indicates the evo-
lution of measure D along the attractor (given by navy
arrows).

C. General remarks

There are some general rules about the described pro-
cedures. Firstly, the more segments we use (the larger
k) the more accurate description of the stability margin
along the attractor we can provide. However, in practical
applications the choice of segmentation can be done bas-
ing on the properties and restrictions imposed on the in-
vestigated system. For example, if we measure the angu-
lar position of the pendulum with 1 [deg] step we should
adjust the number of segments taking into account the
measurement precision.
Similarly, the larger the number of trials m the more

accurate results we get. The minimum number of trials
depends on the dimension of the considered system n and
the number of segments k. In generalm should be greater
than 10n ·k but the minimum number of trials should also
take into account the properties of investigated problem.
In the description we use the Euclidean distance as

a measure between the orbit and the boundary of its
basin of attraction. This measure has no physical mean-
ing other that it enables to compare di�erent parts of the
orbit. As mentioned the proposed concept is general and
one can use other measures adequate for the considered
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FIG. 3. Presentation of the procedure for an autonomous 3-dimensional system (a,b,c) and a 2-dimensional non-autonomous
system (d,e,f). Panels (a,d) show the considered attractors and sample segments with corresponding state vectors. Panel (b)
presents the projections of the basins of attraction calculated for point

(
q11 , q

1
2 , q

1
3

)
. Panel (c) is the zoom up around point(

q11 , q
1
2 , q

1
3

)
on which we indicate measure D1 for the �rst segment with navy arrow. Panel (e) presents the non-autonomous

attractor in 3D space including time and parts of the phase space that refers to the �rst (red) and the second (blue) group of
trials. Panel (f) shows the evolution of measure D depicted by navy arrows.

phenomena, such as the di�erence in the energy level or
a speci�c type of perturbation.

The results can be presented in the plot showing the
changes of the selected measure (D) with respect to the
number of segments, time or one coordinate of the sys-
tem. However, the aim is to provide a quantitative de-
scription of the stability margin along a stable periodic
orbit. In case of fractal basin the distance will go to
zero with a su�cient number of trials. Thus, one can
use our method to identify attractors with fractal basin,
but the distance will be the only obtained information.
Basing on that data we can detect the position on the at-
tractor with the minimum DMIN and maximum DMAX

distance between the attractor and its basin boundary.
DMIN indicates the moment in which it is the easiest to
induce the switch to another solution while for DMAX a
transition to another attractor is the least likely to hap-
pen. Apart from the above, we can calculate the average
distance between the attractor and the boundary of its
basin of attraction along the attractor DAVG which can
help to compare the stability of co-existing attractors and
provide crucial knowledge about the probability reaching
tipping points.

III. PARADIGMATIC EXAMPLES

A. Rössler system - example of an autonomous system

As the �rst example we consider the autonomous
Rössler system given by the following set of ordinary dif-
ferential equations (ODEs):

ẋ = −y − z,
ẏ = x+ ay,

ż = b+ z (x− c) ,
(5)

with the following parameters values: a = 0.2, b = 9.0,
c = 48.0 for which there exist two stable attractors (pe-
riodic oscillations) named B and C (Fig. 4(a)). We
will consider the time-dependent stability margin along
the attractor B and divide it into k = 100 segments.
We perform m = 2000 000 trials each time randomly
choosing initial conditions from the following ranges:
x ∈ [−85, 85], y ∈ [−80, 60], z ∈ [−30, 270]. For each
trial we note initial conditions and remove some initial
part to be on an attractor. Then, for each segment i ∈ k
we calculate the minimum distance D from its middle
point to the initial conditions that do not lead to B.
The results are presented in Fig. 4 (b,c) where we show
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changes of D with respect to the number of segment i.
In Fig 4 (b) we indicate the middle points for every seg-
ment with a dot using color scale to re�ect the value of
D. To enable the location of segments, we name every
tenth segment. In Fig. 4 (c) we show the results (black
dots) and connect them to get the estimated D(i) func-
tion. We �nd that the value of D strongly varies along
the considered attractor. It reaches its maximum value
(12.77) for the 21st segment and its minimum (4.27) for
the 96th segment. Generalizing, we can say that for most
of the orbit D ≈ 8, while it signi�cantly increases when
z > 95 and decreases for z ∈ [0.5, 5]. Thus, the stability
margin substantially depends on the position of the at-
tractor and using the proposed method, we can indicate
moments when reaching tipping point is more (low D) or
less probable (high D).

B. Parametrically driven Du�ng oscillator - example of a
non-autonomous system

Next, we study the parametrically driven Du�ng os-
cillator, a non-autonomous system given by the following
second order ODE :

ẍ+ cẋ− x+ a (1 + f sin (t))x3 = 0 (6)

We use the following values of parameters: c = 1,
a = 1, f = 0.86 for which there are two stable coexisting
attractors F and G both corresponding to period-2 os-
cillations. Both attractors have the period 4π. We focus
on the attractor F and divide it into k = 125 segments.
We perform m = 500, 000 trials drawing initial condi-
tions and time from the following ranges: x ∈ [−3, 3],
ẋ ∈ [−3, 3] and t0 ∈ [0, 4π] as we analyze an attractor
of period 4π. Then, we divide the trials in 125 groups
basing on the drawn initial time. In Fig. 5 we present
the outcome of the procedure. Fig. 5(a) presents with
the color scale the evolution of D along the attractor in
3D space. In Fig. 5(b) we show the evolution of D with
respect to the number of segments. The average distance

to the basin boundary is DAVG = 0.295 and we see that
it varies noticeably along the attractor. The value of D
oscillates around 0.3 for the �rst 45 segments, then it
drops around the 75th segment and increases up to 114th

segment when it reaches its maximum value.

In Fig. 6(a) we present the evolution of distance be-
tween the F and the boundary of its basin of attraction
in 3D space. The blue line is the trajectory of the sys-
tem. On both the bottom and the back surfaces of the
3D panel (a) we show the projections of the trajectory as
a blue curve and with gray color we mark the projection
of the �safe� part of the phase space around the trajec-
tory. In panels (b,c,d) we show three exemplary basins
of attraction calculated for t1, t76 and t114 respectively.
Fig. 6(c) presents the basins of attraction calculated for
the minimum value of DMIN = 0.123 and Fig. 6(d) for
the maximum DMAX = 0.638.

IV. EXPERIMENTAL RESULTS

Now, we investigate a basic type of a double pendulum,
namely a two degree of freedom system with a harmonic
excitation (Fig. 7). The angular displacements of the
�rst and the second pendulum are given by ϕ1 and ϕ2

respectively. To simplify both, ϕ1 and ϕ2 are taken from
the range (−π, π] [rad] by applying the modulo function
ϕi = ((ϕi + π) mod 2π) − π [rad], for i = 1, 2. The rig
(Fig. 7 (b)) is mounted on the shaker which excites the
system parametrically with a harmonic function of the
amplitude As and frequency ωs. The horizontal pendu-
lum has the length l1, massm1, moment of inertia J1 and
the center of gravity is located at the distance d1 from its
pin joint. The sti�ness of the spring that supports the
end of the pendulum is k1. The second pendulum has the
mass m2, moment of inertia J2 and the center of gravity
is located at d2 from its pin joint. The viscous damping
coe�cient in the pin joint of the �rst pendulum is c1 and
of the second one c2. The dynamics of the system is given
by the following set of ODEs:

(
J2 +m2d

2
2

)
ϕ̈2 +m2d2

(
Asω

2
s cos(ωst+ t) + g

)
sinϕ2+

+m2d2
(
x1

(
cos (ϕ1 − ϕ2) ϕ̇

2
1 + sin (ϕ1 − ϕ2) ϕ̈1

))
+ c2ϕ̇2 = 0,(

J1 +m1d
2
1 +m2x

2
1

)
ϕ̈1 + c1ϕ̇1 +

1
2 l

2
1k1 sin (2ϕ1) +m2x1d2

(
sin (ϕ1 − ϕ2) ϕ̈2 − cos (ϕ1 − ϕ2) ϕ̇

2
2

)
+

− (m1d1 +m2x1)
(
Asω

2
s cos(ωst) + g

)
cosϕ1 = 0.

(7)

The parameter values are the following: J1 = 4.524×
10−3 [kgm2], m1 = 0.5562 [kg], l1 = 0.315 [m], d1 =
0.180 [m], x1 = 0.153 [m], c1 = 0.05 [Nms], k1 =
6850 [N/m], J2 = 4.469×10−5 [kgm2], m2 = 0.02077 [kg],
d2 = 0.063 [m], c1 = 7× 10−6 [Nms], g = 9.81 [m/s2]. All
the parameter values were determined in a series of ded-

icated experiments29. In5, we have shown stable coexist-
ing periodic solutions for this system and their ranges of
stability.

We classify the solutions with respect to the motion of
the second pendulum. For validation purposes we con-
sider the stability of the attractor that refers to 1 : 1 rota-
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FIG. 4. Presentation of coexisting periodic attractors B (black line) and C (red line) of the Rössler system given by Eq. 5 -
panel (a). Panel (b) shows attractor B with middle points of 100 segments marked by dots colored according to the value of
D. Panel (c) presents the evolution of the stability margin D along the attractor B with respect to the number of segment.

FIG. 5. Attractor F of the Du�ng system (Eq. 6) with mid-
dle points of 125 segments marked by dots colored according
to the value of D - panel (a). Evolution of the stability margin
D along attractor F with respect to the number of segment.
With black dots we indicate the value of D in the middle of
segment and with blue line its continous estimation (b).

tions of the second pendulum; we call this solution H. In
one period of excitation the second pendulum performs
single rotation and the coordinate ϕ2 increases continu-
ously from −π [rad] to π [rad]. We divide the attractor H
into k = 100 segments and perform our time-dependent
stability margin analysis for two sets of excitation pa-

rameters As = 0.002 [m], ωs = 50 [rad/s] (Case 1) and
As = 0.005 [m], ωs = 35 [rad/s] (Case 2). In Case 1
the system has six co-existing solutions, while in Case 2
four. For each case we calculate m = 2, 000, 000 trials
which give us on average 20, 000 trials per each consid-
ered segment. It is convenient to determine the stability
margin with respect to the position of the second pen-
dulum D(ϕ2). In Fig. 7(c,d) we present the numerical
results obtained for both sets of excitation parameters
showing that in both cases the jump to the other solu-
tion is more likely to happen around the upper position
of the pendulum. This range is marked with green and
purple arrows (D < 2.25). The distance to the basin
boundary is noticeable larger around ϕ2 = 0, so around
the hanging down position the system is less susceptible
for perturbations. With red and blue arrows we mark
the range where D > 3.
To validate the proposed method, we perform an ex-

perimental investigation using the rig described above.
As the source of perturbation we use a compressor with
a controllable pressure and nozzle position. The com-
pressor enables the maximum pressure 0.40 [MPa] and
the nozzle has the inner diameter of 4.5 [mm]. We in-
vestigate eight di�erent positions of the nozzle. In Fig.
8 we present geometrical measures that we use to de�ne
the nozzle position and in the table we give their values
for eight studied positions - each named with the number
that is recalled in the results presented in Fig. 7.
We do a series of tests around ϕ2 = 0 [rad] and around

ϕ2 = π [rad], each time considering four angles of the
nozzle. For each position of the nozzle we investigate
how the perturbations due to the air �ow in�uences the
behavior of the pendulum. For each test we obtain 1 : 1
rotations, and start to slowly increase the pressure until
we reach the tipping point and the solution changes. To
detect this moment precisely, we continuously monitor
the period of the pendulum's motion using the optical
gate mounted at the bottom frame (see Fig. 7(b)). For
each nozzle position we perform 10 tests and calculate
the average pressure for which the system jumps to the
other attractor.
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FIG. 6. Panel (a) is a 3D presentation of solution F with the evolution of measure D in time domain. Three exemplary basins
of attraction calculated for t1, t76 and t114 are shown in panels (b,c,d).

Our results of the experimental tests are given in the
Table in Fig. 7 and organized to enable a comparison of
the results obtained for the same type of perturbations
for ϕ2 = 0 [rad] and ϕ2 = π [rad]. It is important to
remind that the numerically obtained measure D is the
distance to the closest boundary of the basins of attrac-
tion. Hence, one should not compare the exact values of
D with the data in the Table which indicates the mag-
nitude of perturbations introduced to the system by the
air �ow.

The experimental results con�rm that around the
hanging down position (ϕ = 0 [rad]) the system is less
susceptible for perturbations. This is somehow predica-
ble but the method can be used for di�erent systems,
where the prediction is not so intuitive.

An increase of the average pressure for ϕ2 = π [rad]
in comparison to ϕ2 = 0 [rad] is observed in all the con-
sidered cases, in particular in Case 1, we observe a 45%
increase and 25% for Case 2. The greater increase for
Case 1 was also revealed from the numerical analysis (Fig.

7(c,d)). Moreover, the experimental results revealed that
the di�erence in the stability margin between both cases
is noticeable only around ϕ2 = π [rad] (20% increase),
while around ϕ2 = 0 [rad] it is negligible (4%). This was
also deduced with our method (see Fig. 7(c,d)). Hence,
we obtain a very good correspondence between the ex-
perimental data and the numerical predictions. The ex-
perimental investigation enabled to con�rm the numeri-
cal results and prove the potential practical importance
of the proposed method to quantify the stability margin
along trajectories.

V. CONCLUSIONS

In this paper we have presented a novel time-dependent
stability measure that enables to quantify the stability
margin along stable periodic orbits. Using this approach,
we are able to identify the parts of the orbit, where
the system is susceptible for perturbations and asses the
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Experimental results

Case 1 Case 2

avg. pressure causing solution change [MPa]   (nozzle position)

average 0.232 0.160 0.193 0.154

+ 45% + 25%

+ 4%
+ 20%

1

[rad] [rad]

FIG. 7. Physical model of the double pendulum under consideration (a) and the photographic view of the experimental rig (b).
Panels (c,d) presents the stability margin D(ϕ2) along attractor H calculated for the two sets of excitation parameters (Case
1 (c) and Case 2 (d)). Results of experimental investigation are given in the table below. The position of the nozzle is given
according to the notation given in Fig. 8. Colors in the table refer to the regions marked with arrows in panels (c,d)

probability of reaching a tipping point.
We present sample-based procedures to get the pro-

posed measures for autonomous and non-autonomous
systems. We apply them to paradigmatic models to
present the idea and highlight the advantages of the pro-
posed method. Finally, we show an experimental con-
�rmation that the introduced methodology is a reliable
tool and expands the knowledge of the dynamics of mul-

tistable systems. Moreover, in the proposed method the
algorithm does not become more complex with an in-
crease of system phase space dimensions which is often
observed for classical methods (analytical methods, path-
following, basins of attractions).
The proposed new stability measures are especially

useful for the analysis of multistable systems and can
be utilized to explain more complex dynamics in a wide
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FIG. 8. Nozzle position is given by the angle α and distances
d and h. The pair of parameters α and h de�ne the direction
of the air �ow - consistent (positions: 1, 3, 6, 8) or opposite
(positions: 2, 4, 5, 7) to the pendulum linear velocity, while
the distance d is constant.

range of dynamical models in various disciplines of sci-
ence.
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