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A B S T R A C T

In this work we analyse the possibility of energy harvesting from the vibration of the environment. The
investigations are performed using experimental rig, which consists of a parametrically forced pendulum and an
energy harvester, and the mathematical model developed based on the experimental rig. Numerical studies focus
on the oscillating motion of pendulum in 2:1 resonance and show good agreement with experimental results. We
present that the energy harvesting is possible and is more efficient for shorter reduced length of the pendulum, as
proved numerically and experimentally.

1. Introduction

Pendulum is the most fundamental example of mechanical oscilla-
tor. It has drawn attention of scientists since ages, just to mention
Galileo [1] or Huygens [2]. The basic application of pendulum is to
measure the time, as for small swing amplitude φ0 the period T depends
only on the length of the pendulum l, which can be formulated as
follows:

T π l
g

φ= 2 ≪ 1.0
(1)

The pendulum has a simple design principle, yet can exhibit very complex
dynamics [3] and has been widely used as a building block in complex non-
linear systems [4–13]. When the pendulum is subjected to excitation with
angular frequency ω two times larger than the natural frequency Ω, a 2:1
parametric resonance occurs. Such a property of the pendulum has
convinced scientists to investigate possible application of pendulum in
energy harvesting. Most of the ideas involve using sea waves as source of
excitation. The pendulum system, placed on floating structure, oscillates or
rotates transforming mechanical energy into electrical energy [14,15]. The
topic of rotating solutions of parametrically excited pendulum is addressed
in [16], while the optimization of energy extraction from such a system is
presented in [17]. Energy extraction from rotary motion of pendulum
subjected to stochastic wave excitation is described in [18]. Laboratory
experiments in wave flume are performed in [19], as well as in [20] where
authors test 1:45 scaled model of energy harvesting device, prepare simple
analytical model and make usability study based on the oceanographic data

for Italian coastline. However, when using sea waves as an excitation source
for the pendulum system, one should construct long pendulum in order to
obtain 2:1 resonance. For example a period of sea waves Tw=3 [s]
corresponds to almost nine meters long pendulum (according to [21]
ordinary gravity waves periods span from 1 [s] to 30 [s]). The problem of
obtaining low natural frequency of pendulum is addressed in [22], where
authors propose a system of n equally spaced pendula forming a ring with a
common pivot point, which eliminates the direct dependence of pendulum
length on its natural period. The concept has been further developed in
[23–25]. The other approach presented in many works is vertical axis
pendulum, where central pivoted pendulum on floating structure rotates
around vertical axis. The first patent for device using this principle was
issued back in 1966 [26]. Nowadays patents for modern designs are owned
by Neptune Wave Power LLC [27,28] and Wello Oy [29]. Papers [30,31]
discuss modelling and optimization of vertical axis pendulum wave energy
generator. Energy harvesting from the point of view of vibration absorption
is shown in [32].

We propose a simple device to harvest the energy from oscillating
environments based on pendulum oscillations in 2:1 parametric reso-
nance. The mechanical energy of pendulum is transformed by power
generator into electrical energy. This paper is organized as follows: In
Section 2 mathematical model and working principles of the investi-
gated system are presented, which includes the pendulum, transmission
system, as well as DC power generator. In Section 3 the results of the
experimental and numerical study are presented, while the last Section
4 summarizes the obtained results.
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2. Investigated system and working principles

A system of physical pendulum excited vertically is investigated, as
the proof of possible energy harvesting from the pendulum oscillations.
The oscillations of the pendulum power a electric generator. The torque
of pendulum is transferred by the system of gears, a freewheel and a
small precision coupling attached to the electric generator shaft.

The mathematical model is developed for already existing construc-
tion. The pendulum structure consists of a rod, weight discs, flywheel
with gear systems, a hub with freewheel mechanism, a precision
coupling and a small electric generator. The flywheel with gear system
is connected to pendulum shaft using freewheel mechanism. Freewheel
transfers motion of the pendulum to the gear system, which eventually
is transferred to the electric generator, wherein mechanical energy is
transformed into electric current. The schematics of analytical model,
along with principles explaining how the phase variables are chosen, is
presented in Fig. 1, while the device is illustrated in Fig. 2(a). The
experimental set-up is photographed in Fig. 3.

The system can be represented mathematically by the following set
of equations:

⎪

⎪

⎧
⎨
⎩

I φ c φ mω Al ωt φ mgl φ
I θ c θ sgn θ M

¨ + ˙ + cos( )sin + sin = 0
¨ + ˙ + ( ˙) = 0f

1 1
2

2 2 (2)

where: φ - angular position of pendulum, θ - angular position of
flywheel, I I,1 2 - moment of inertia of pendulum and reduced moment of
inertia of freewheel, gear box, shaft and electric generator; m - mass of
pendulum, l - distance from centre of gravity to pivot axis; c1, c2 -
viscous angular damping coefficients,Mf - friction torque; A - amplitude
of vertical excitation, ω - frequency of excitation; t - time, g - gravity
acceleration. Overdots stand for derivatives with respect to time t. The
electrical part of the model is described in further part of this paper.

The freewheel provides simple directional coupling and enables
mechanical separation of driveshaft from the driven shaft in certain
circumstances, i.e., it disengages when driveshaft (input) rotates slower
than the driven shaft (output). Freewheel is a common mechanism
encountered in vehicles, as it prevents reversing the energy flow in the
system (e.g. vehicle wheels going downhill do not power the motor,
which is definitely not desirable). While disengaged, output shaft can
rotate freely (freewheeling) using energy from its momentum to keep
angular motion. Freewheel mechanism is depicted in the Fig. 2(a). It
consists of two gears placed one inside the other. The inside gear is
equipped with teeth and spring-loaded pawls mechanism, working
based on ratchet principle. The outside gear has cut indentions to match
the teeth. Should the inside gear rotate faster then outside gear the
engagement occurs. In freewheel devices usually two or more pawls are
applied to obtain better reliability and decrease the wear. However, it is
rare that more than two pawls can engage simultaneously. In the
investigated system the freewheel model is simplified by assuming only
single pawl and nf=16 teeth in mechanism. As the teeth are equally
spaced on disk perimeter, the engagement can occur if the amplitude of
pendulum (driving shaft) is greater than critical value φcritical, which
can be calculated from the number of teeth nf in mechanism.

φ π
n

= 2
critical

f (3)

Engagement takes place only if the following conditions are fulfilled:

φ θ φ kφ˙ > ˙ ∧ ∃ =
k

critical∈{1,‥,16} (4)

At the engagement instance the velocities of both shafts are calculated
using Newtonian impact theory with coefficient of restitution CR. The
system can be then considered as a body with one degree of freedom, as
shown in Eq. (5). The moment of inertia (and viscous damping
coefficient) is equal to the moment of inertia of the pendulum and
the rest of the system reduced to the axis of the pendulum.

I I φ c c φ mω A l ωt φ mgl φ M( + ) ¨ + ( + ) ̇ + cos( )sin + sin + = 0f1 2 1 2
2

(5)

The electromotive force ε generated by the DC generator is
proportional to the input speed on the generator shaft, thus:

ε K zθ= ˙e (6)

where Ke - generator constant, z - gear ratio. DC generator is model by
three elements connected in series (i.e., generator, resistor - represent-
ing armature resistance Rint, coil - representing armature inductance L).
RL is a electrical load connected to the power source. It is possible to
choose between two values of resistance RL applied in the system, as
seen in the Fig. 4. Applying Kirchhoff voltage law for the circuit one
obtains:

K zθ i R R L i
t

˙ − ( + ) − d
d

= 0,e int L (7)

where i is the current flowing through the circuit. Although the DC
generator is applied the input speed on generator shaft is not constant,
thus the need of including the armature inductance term in Eq. (7) The
instantaneous power P generated on resistor RL is then equal to:

Fig. 1. Schematics of the mathematical model of the system (φ - angular position of
pendulum, θ - angular position of flywheel, A ωtcos kinematic vertical excitation.

(a) (b)

Fig. 2. (a) Model of the investigated pendulum: (1) electric generator, (2) precision
coupling, (3) pendulum, (4) flywheel with gear system, (5) hub with ratcheting freewheel
mechanism. (b) Cross section of a freewheel mechanism.
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P i R= .L
2 (8)

Effective power Pe over time interval t t tΔ = −2 1 is given by following
formula:

∫
P

P t dt

t
=

( )

Δ
.e

t

t

1

2

(9)

Eq. (7) combined with Eq. (2) form the system of ODE - Eq. (10), which
describes mechanical and electrical properties of the system.

I φ c φ mω A l ωt φ mgl φ¨ + ˙ + cos( )sin + sin = 01 1
2 (10a)

I θ c θ sgn θ M¨ + ˙ + ( ˙) = 0f2 2 (10b)

K zθ i R R L i
t

˙ − ( + ) − d
d

= 0e int L (10c)

The pendulum oscillations can be observed in the region of 2:1
parametric resonance when the excitation frequency doubles the
natural frequency of the pendulum. In the considered system, a physical
pendulum is used, which can be treated as a mathematical pendulum
with mass point at a distance l I ml= /r 1 (reduced length) from the pivot
axis. Due to the sine term in equation of motion of simple mathematical
pendulum, it is possible to apply small-angle approximation, which
yields to straightforward relation between natural frequency ω0,
natural period T0 and the reduced length of the pendulum lr, namely,
ω g l= / r0 , T π ω= 2 /0 0. On the other hand these relations are not valid
for larger amplitudes, where one needs to take into account additional
dependence on amplitude of oscillations. To address this issue, a power
series approximation of elliptical integral can be applied. Another
factor influencing the frequency of oscillations is damping. For damped
systems, the frequency of oscillations ωd slightly changes:

⎛
⎝⎜

⎞
⎠⎟ω ω c

m
= −

2d 0
2

2

(11)

Summarizing the above mentioned dependencies one can conclude

that natural period of pendulum depends on its reduced length,
amplitude of oscillation and also damping. The parametric resonance
in that particular range of amplitude of excitation A, occurs only at
small parameter space (see Fig. 5). The system is very sensitive to
changes in the excitation period and it is very easy to jump out of the
resonance state. In order to set the pendulum oscillating in amplitude
ranges about 0.87 [rad], the system is started in parametric resonance
for small amplitudes. As the amplitude grows, the period of excitation is
slowly increased, so that it matches the new natural period of
oscillation. In experiment this was done manually without any control
system. It is possible to obtain amplitudes around π /2 [rad], but due to
equipment limitations (i.e., high dynamic torque on the pendulum
mounting) we decided to set level of target amplitude at 0.87 [rad].

The electromotive force generated, depends on the input angular
velocity on the generator shaft (Eq. (6)), which reaches the largest
values for pendula with high natural frequency. On the other hand, the
longer the pendulum is, the larger driving torque is produced to
overcome damping and friction. For that reason, the influence of the
lr on the effective generated power is investigated in Section 3.3.

In experiment two different values of loading resistors RL are
applied. Different electrical resistance in the circuit influences the
mechanical properties of the model. The smaller the resistance the
greater the generated current, which yields to greater Lorentz force
inside the generator, which opposes the movement of generator shaft.

Fig. 3. Experimental set-up (a) and zoom in on the pendulum (b).

Fig. 4. Scheme of electrical circuit.
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Fig. 5. Maximum peak-to-peak amplitude φmax pk pk− (colour) in ω A( , ) parameter space.

Red line represents laboratory limit Alimit. lred=0.178 [m], RL=101 [Ω]. Initial conditions
for each point on ω A( , ) plane: φ π= − /3, φ̇ = 0, θ = 0, θ̇ = 0, i=0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article).
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This property of the generator is implemented by applying different
values of damping coefficient c2 for each electrical resistance (see
Table 1). We determine values of c2 based on dissipation of the energy
during free rotation of system moment of inertia I2 (at the time of

measurements of the damping coefficient the pendulum is decoupled).
All values of parameters in Table 1 are determined based upon the
measurements performed with the experimental system.

3. Results and discussion

In this section, the results of numerical computation, as well as
experimental measurements of the investigated system are presented.
Our main goals are to achieve comparable qualitative behaviour of the
mathematical model with a real laboratory rig and to perform para-
meters studies on the influence of reduced length of pendulum on the
obtained effective power. Mathematical model is developed from
already existing prototype, so it is crucial to identify the parameters
and phenomena governing the system.

Table 1
Values of parameters applied in the mathematical model based on experimental
measurements.

I1 I2 m CR

6.46 ·10 [kgm ]−1 2 7.96·10 [kgm ]−3 2 5.07 [kg] 0.3

Mf A z

4.29·10 [Nm]−2 5 [mm] 10

L Ke Rint

13.5 [mH] 1.41 ·10 [Vs/rad]−1 15.4 [Ω]

c1 c2 for R Ω= 48 [ ]L c2 for RL=101 [Ω]

9.49·10 [kgm /s]−3 2 2.81·10 [kgm /s]−2 2 1.97·10 [kgm /s]−2 2
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3.1. Numerical results

The integration of set of ODE (Eq. (10)) is performed using Runge-
Kutta-Fehlberg 45 method, wherein values of system parameters and
geometry are kept constant throughout the whole experiment. The
values of viscous damping coefficients are measured in the experi-
mental system and used in the mathematical model. The coefficient of
restitution CR=0.3 is calculated, based upon velocities and moments of
inertia of the pendulum and the flywheel before and after impact.
Freewheel mechanism consists of n = 16f teeth, resulting in the critical
angle φ = 0.392critical [rad] (see Eq. (3)). All others parameters are
identified experimentally and are listed in the Table 1.

The numerical integration requires authors' own algorithm devel-
opment for the engagement detection inside freewheel, which ensures
that the integration procedure does not force infeasible behaviours (e.g.
teeth penetration inside freewheel). Should the solution approach the
impact zone, when respective tooth and pawl are close to each other,
the integration step is reduced in order to accurately detect the
beginning of the contact. If the engagement occurs the Eqs. (10a) and
(10b) are changed to (5). However, when tooth and pawl are in stick
phase, it is checked whether the flywheel shaft drives the pendulum
shaft. If this is the case, the integration procedure goes one step back
and the equations for the engagement mode Eq. (5) are changed to
normal mode Eqs. (10a) and (10b).

In order to explore the dynamics of the system in question, we
perform a parameter study in two-parameter space (see Fig. 5). The
parameter space is discretised into grid with element size

ωΔ = 0.015 [rad/s], AΔ = 5·10−4 [m]. The variable system parameters
are set to: l = 0.178red [m], RL=101 [Ω], while the others remain as
listed in Table 1. Each of the elements in the grid is computed starting
from the same initial conditions, namely, φ π= − /3, φ̇ = 0, θ = 0, θ̇ = 0,
i=0. Colour represents maximum peak-to-peak amplitude of pendulum
oscillation φpk−pk detected for time 1000 [s] t< < 1500 [s]. The peak-to-
peak amplitude is chosen due to the chaotic and asymmetric oscillation
of the pendulum, which is caused mainly by the fact that the freewheel
engages only when pendulum is moving in one direction. Red line
corresponds to the experimental limit of excitation amplitude
A = 0.005limit [m]. The obtained results clearly indicate two resonance
tongues. The one for 1:1 resonance is thin and requires excitation
amplitude above Alimit. Its tip is located at ω = 7.41 [rad] and
A=0.022 [m]. On the other hand, the stable region for 2:1 resonance
is larger and requires smaller excitation amplitude, suitable for the
experimental equipment. This is why in this paper, we focus on the 2:1
resonance only.

In the Figs. 6(a), (c) time diagrams of selected mechanical phase
variables are presented, while instantaneous power generated is
depicted in Fig. 6(e). The results corresponds to the position of the
gravity centre l=0.157 [m], reduced length lr=0.177 [m], angular
excitation frequency ω=14.16 [rad/s] and electric load RL=48 Ω[ ].
Initial conditions used here are as follows: φ = 0.645 [rad], φ̇ = 0 [rad/
s], θ = 0 [rad], θ̇ = 0 [rad/s], i=0 [A]. Values of remaining parameters
are listed in Table 1.

3.2. Experimental results

An experimental investigation is performed to verify the correctness
of the elaborated mathematical model. The experimental rig is depicted
in Fig. 3. Two electrical loads (i.e., R Ω= 48 [ ]L , R Ω= 101 [ ]L ) are
connected to the generator, in order to compare harvester performance
in different working conditions. The whole pendulum set is mounted on
a vertical air-cooled LDS low force shaker, oscillating with constant
amplitude A. The construction of the pendulum allows to change the
position of the pendulum weight, yielding to the variation of reduced
length of pendulum lr. Angular positions and velocities of pendulum
and flywheel are extracted by means of motion tracking software, while
the current i and output voltage of the generator U is measured using

data acquisition card.
Figs. 6(b), (d) present the time diagram for the mechanical phase

variables of the system measured in experiment, while instantaneous
power generated is depicted in Fig. 6(f). The obtained results are
qualitatively comparable with the numerical results presented in
Section 3.1. To achieve higher efficiency of energy harvest it is
necessary to install high performance electric generator with low
mechanical resistance and apply a two directional coupling instead of
freewheel mechanism. The device has been additionally tested in real
working conditions (see Appendix A).

3.3. Performance optimization

The objective of the optimization is to find the most optimal
reduced length of the pendulum lr for which we can obtain the best
power characteristics. Due to the design limit of the experimental set-up
we have chosen amplitude of oscillation around 0.87 [rad] as the
target. The value of the reduced length of pendulum is changed by
changing the position of the pendulum mass along the rod. We have
created an algorithm, which calculates the effective power generated
for different values of the reduced length of pendulum.

The obtained results are presented in Fig. 7. For each value of
reduced length, we find the largest effective power within the
amplitude limit of 0.87 [rad]. As the pendulum is in the resonance
state, the period of excitation is slowly increased so that it follows the
amplitude of oscillation. eventually reaching large values around
0.87 [rad]. After reaching the vicinity of target amplitude algorithm
make small changes in the excitation period in order to obtain the
largest amplitude possible in that particular range. The system is
sensitive to any alterations in the excitation period and it is possible
to jump out of the resonance state. Having found the most optimal
conditions for particular value of reduced length of pendulum we
compute the energy and then the efficient power of the generator
according to Eq. (9).

In the Fig. 7 results of parameter study of effective power Pe as a
function of reduced length lr are presented for both, numerical and
experimental measurements. The numerical results are depicted with
lines, while experimental results with markers. Analysing the results
one can conclude that, the most effective value of reduced length is
lr=0.153 [m] for RL=48 Ω[ ] and lr=0.143 [m] for RL=101 Ω[ ]. This
slight difference is mainly due to different level of damping coefficients
c2 for these resistors. Larger values of reduced length of pendulum
produce larger torque transmitted from pendulum to flywheel. How-
ever, the longer the pendulum is, the slower it oscillates. The optimal
values, which have been found, make balance between the torque
driving the generator and speed of oscillation. The experimental results
match the results obtained for numerical model qualitatively, as well as
quantitatively. We also performed experimental test in water park with
artificial waves and we present it Appendix A.

4. Conclusions

In this paper we present device for energy harvesting from
pendulum oscillation. A mathematical model is derived, which is then

0. 01 .2 0. 03 .4

0.2

0.4

0.6

lr [m]

P e
[W

]

0.0

experimental 48Ω

numerical 101Ωexperimental 101Ω

numerical 48Ω

Fig. 7. Effective power as a function of reduced length of the pendulum lr for different
resistors.
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verified by the performed experiments. The pendulum shows the
robustness only at a certain excitation frequency (2:1 locking ratio).
The results obtained by the mathematical model qualitatively corre-
sponds to the experimental results. We have found that the energy
harvesting is more efficient for shorter reduced length of pendulum
(i.e., low excitation and natural periods), which provides large angular
velocity crucial to the electric generator, but yet high enough driving
torque to overcome friction and damping in the mechanisms. Although,
the device fulfilled the main design goal to harvest the pendulum
energy, there is still space for improvements (e.g. high performance
electric generator, transforming the pendulum movement in both
directions, using multiple pendula).
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Appendix A. appendix

The proposed device has been tested in wave pool in Aquapark Fala in Lodz, Poland. The pendulum is placed in an inflatable boat, equipped with
wooden floor, to which the device is mounted. The experiment has shown that the system can work in real environment and the energy generated is
enough to power simple LEDs (see Fig. A.1).
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