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Abstrat

In this paper we show the �rst broad experimental on�rmation of the basin stability approah. The

basin stability is one of the sample-based approah methods for analysis of the omplex, multidimensional

dynamial systems. We show that investigated method is a reliable tool for the analysis of dynamial

systems and we prove that it has a signi�ant advantages whih make it appropriate for many appliations

in whih lassial analysis methods are di�ult to apply. We study theoretially and experimentally the

dynamis of a fored double pendulum. We examine the ranges of stability for nine di�erent solutions of

the system in a two parameter spae, namely the amplitude and the frequeny of exitation. We apply the

path-following and the extended basin stability methods (Brzeski et. al., Meania 51(11), 2016) and we

verify obtained theoretial results in experimental investigations. Comparison of the presented results show

that the sample-based approah o�ers omparable preision to the lassial method of analysis. However,

it is muh simpler to apply and an be used despite the type of dynamial system and its dimensions.

Moreover, the sample-based approah has some unique advantages and an be applied without the preise

knowledge of parameter values.

Introdution

There is a rih variety of di�erent mathematial tools to analyze nonlinear dynamial systems. Still,

more sophistiated methods are usually di�ult to apply. For example, there are a number of di�erent

toolboxes that enable the path-following analysis but their funtionality is stritly limited to the type of the

investigated system and its dimensionality. The dynamial analysis is espeially hallenging for multistable

systems, where we have to onsider multiple steady states that oexist in the phase spae. It is a hallenging

problem and multistability is widely studied in many disiplines [20, 11, 12, 7, 21, 17, 16, 4℄. Therefore, also

new tools to analyze multistable systems are being developed.

In 2013 Menk et al. proposed a basin stability measure that uses Bernoulli trials to estimate the volume

of a basin of attration [15℄. Despite it is new, the method was already suessfully applied in numerous

di�erent appliations [14, 9, 8, 10℄. In 2016 another new tools to investigate multistable systems were

proposed, namely survivability [6℄ that inludes the analysis of the transient motion and basin entropy [2℄

that measures the basin ompatness.

The growing interest in sample-based methods omes from two main advantages. They an be easily

applied to all types of systems and reprodue the inherent unertainty of perturbations. To apply these

methods, we just need to have a reliable diret numerial integration ode for the mathematial model. Also

the omputational e�ort does not grow signi�antly with the inrease of the phase spae dimensions. This

makes suh sample-based methods even more appealing for the analysis of very high-dimensional systems

suh as large networks of osillators, power grids [18℄ or brain dynamis [13℄. However, up to this moment
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there is a lak of experimental studies whih enable to ompare the auray of these methods and lassial

analysis.

Reently [1℄ we desribed an extended basin stability approah by taking into aount mismath in

parameter values. This has pratial fundamentals beause all parameters values are measured or estimated

with some �nite preision and an slightly vary even during normal operation. In this paper, we expand

our approah and perform an analysis in a two parameter spae. We ompare the results from sample-

based analysis with detailed two parameter bifuration diagrams obtained using the path-following method.

Finally, we onfront both methods with experimental data that we use as a benhmark. This is done for 9
di�erent periodi solutions that oexist in a notably wide range of the parameter values. The results enable

us to ritially ompare the auray of both methods and show their strengths and weaknesses. Apart from

that, we show that the sample-based approah an be applied without a preise knowledge of parameter

values and it gives sensible results.

Model of system

We onsider the spei� type of a double pendulum (see Fig. 1) whih is a paradigmati example in

nonlinear dynamis. The �rst pendulum rod is mounted horizontally and onneted to the base with a pin

joint at one end and via a spring on the seond end. Hene, it an only osillate. The seond pendulum is

onneted to the �rst one with a rotational pivot at the distane x1 between both pin joints. The support is

mounted on a shaker and exited kinematially in the vertial diretion. This system is a modi�ed version

of the rig onsidered by Strzalko et al. [19℄ and Dudkowski et al. [4℄.

The angular displaements of the �rst and the seond pendulum are given by ϕ1 and ϕ2 respetively. The

shaker exites the system kinematially with a harmoni funtion of the amplitude A and frequeny ω. The
upper pendulum has the length l1, the mass m1, the moment of inertia J1 and the entre of gravity loated

at the distane d1 from its pin joint. The sti�ness of the spring that supports the end of the pendulum is

given by k. The seond pendulum has the mass m2, the moment of inertia J2 and the entre of gravity

loated at d2 from its pin joint. Due to the relatively small damping in the system we neglet e�ets of dry

frition and other non-linearities of damping harateristis and in both pivots we assume the visoelasti

damping. Hene, for the �rst pendulum the damping oe�ient is given by c1 and for the seond one by c2.
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Figure 1: The physial model of the onsidered double pendulum exited kinematially (Eq. 1) with its parameters.

The equations of motion of the system shown in Fig. 1 are given by the following seond order ODEs:
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The parameters have the following values: J1 = 4.524 [10−3kgm2], m1 = 0.5562 [kg], l1 = 0.315 [m],
d1 = 0.180 [m], x1 = 0.153 [m], c1 = 0.05 [Nms], k = 6850 [N ], J2 = 4.469 [10−5kgm2], m2 = 0.02077 [kg],
d2 = 0.063 [m], c1 = 7 [10−6Nms], g = 9.81 [m

s2
]. All the parameter values were determined in a series of

dediated experiments.

Methods

We ompare the results obtained by using two di�erent approahes and validate them with experiments.

As aforementioned, the onsidered system is a double pendulum fored kinematially in vertial diretion

(Eq. 1). As ontrolling parameters we take the amplitude A and the frequeny ω of the external exitation.

The system is multistable, hene we observe a oexistene of solutions for �xed parameter values. Di�erent

solutions stabilize and destabilize when varying the amplitude and/or frequeny of exitation. The aim of our

study is to investigate the ranges of attrators' stability in the (A, ω) plane. We start with the path-following

method to get a preise boundaries of solutions' stability. Then, for eah solution we perform experiments.

Finally, we apply the sample-based approah (the extended basin stability method [1℄) to determine the

ranges of parameters for whih the given solution an be obtained. In the following subsetions, we desribe

the applied methods and explain the sheme in whih we present the results. This is ruial beause

we present and ompare a large amount of results obtained with various methods. Due to limitations of

the experimental rig, the maximum value of the amplitude of exitation is Amax = 7.7 [10−3m] (higher
amplitudes of the shaker are impossible to ahieve). Similarly, we onsider the frequeny of exitation in the

range ωǫ 〈0, 60〉 [rad/s], beause for higher values the aessible amplitude of the exitation Amax is rapidly

dropping.

0.1. Path-following analysis

In numerial study we onsider the following ranges of the amplitude Aǫ 〈0, 7.7〉 [10−3m] and the fre-

queny of exitation ωǫ 〈0, 60〉 [rad/s]. We perform path-following analysis for 9 di�erent solutions. The

upper pendulum always performs an osillatory motion, while for the seond pendulum we observe both os-

illations and rotations with di�erent loking ratios in respet to the frequeny of the exitation. Therefore,

we name eah solution basing on the behaviour of the seond pendulum and ratio n : m whih means that

for m periods of exitation we observe n full osillations or rotations of the seond pendulum. We deteted

and further onsider: 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 6, 1 : 8 osillations, and 1 : 1, 1 : 2, 1 : 3 rotations.

For all 9 onsidered solutions we perform the path-following analysis by using the AUTO-07p software [3℄.
Eah time we start with a diret numerial integration to prepare the initial periodi solution for ontinuation.

Then, we start with one parameter ontinuation using A or ω as a ontinuation parameter. We detet the

boundaries of stability and perform ontinuation of the bifuration points in two parameter spae. In Fig. 2

(a,d,e) we present the sample results obtained this way (for 1 : 2 osillations). For eah onsidered solution

we use di�erent olour of lines and di�erentiate the line type for di�erent types of bifurations. For saddle-

node (SN) bifurations we use ontinuous lines, for branhing bifurations (BB) dash-dotted, for symmetry

breaking (SB) dotted and for period doubling (PD) dashed lines. In the investigated system (Eq. 1) we

often enounter a period doubling asade. In suh ases we indiate only the �rst and the seond period

doubling bifurations.
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0.2. Experimental investigation

For the solutions deteted numerially, we experimentally �nd the boundaries of the stability in the two

parameter spae (A, ω). The starting points for the experimental study are loated far from the boundary

of stability to ensure that the given solution is reahable experimentally. Depending on the shape and area

of the stability range, we selet from one to seven starting points and for eah apply the following proedure:

• We start the foring with the amplitude and the frequeny of the exitation taken from numerial

results and try to reah the given solution by applying proper initial onditions to the seond pendulum.

The knowledge of the time trae of the solution from AUTO-07p software helps us to apply the orret

initial state.

• When the system reahes the presumed state we mark the amplitude and the frequeny of exitation.

These are the oordinates of a starting point in the two parameter spae. Suh points are marked with

blak dots in Fig. 2(b,e).

• Then, we slowly hange the value of the frequeny or the amplitude of foring with small steps (minimal

step in frequeny is 2π × 10−3 [rad/s] and in amplitude 0.01 [m]). After eah step we wait to hek if

the system remains on the presumed attrator. The range of the parameter value where the solution

stays stable is marked as a trae with a blak line in Fig. 2 (b,e).

• Eventually, we reah the parameter value for whih the solution beomes unstable and the system

jumps to a di�erent attrator. We note the amplitude and the frequeny of exitation for whih the

solution hanged.

• We repeat the above steps four times and ompute the average values of parameters for whih the

solution looses its stability. We take this value as the boundary of stability and mark it with the

perpendiular end of the stability trae (see Fig. 2 (b,e).

To estimate the position of a line that indiates the boundary of stability obtained by the path-following

method in the two parameter spae (A, ω), we repeat the above proedure for di�erent starting points. We

detet the ranges of stability for all 9 enountered solutions whih required enormous e�ort and a lot of

time.

0.3. Extended basin stability approah

Now we apply the extended basin stability approah desribed in our reent work [1℄. To start with, we

have to estimate the ranges of initial onditions that an be applied on our experimental rig. In a number of

dediated experiments we de�ned the aessible ranges of initial onditions that desribe physial restritions

of our rig: ϕ1ǫ 〈−0.0015, 0.0015〉 [rad], ϕ2ǫ 〈−π, π〉 [rad], ϕ̇1ǫ 〈−1.2, 1.2〉 [rad/s], ϕ̇2ǫ 〈−60, 60〉 [rad/s].
Then, we divide the onsidered ranges of parameter values into a regular two dimensional grid in the

following way: for the frequeny of exitation (ωǫ 〈0, 60〉 [rad/s]) we assume 23 subsets with equal width of

2.5 [rad/s]. We intentionally omit extremely small values of ω and start from the range〈1.25, 3.75〉 [rad/s]
(for �rst olumn of the grid) and �nish with 〈56.25, 58.75〉 [rad/s] (for the last olumn). For the ampli-

tude of foring Aǫ 〈0, 7.7〉 [10−3m] we take 15 equally spaed subsets with the step of 0.5 [10−3m]. Here,

we also ignore values near the aessible boundaries and start the lower row of the grid with the range of

〈0.25, 0.75〉 [10−3m] and �nish the grid with 〈7.25, 7.75〉 [10−3m]. By that, we reeive a lattie of 345 boxes
eah overing the range of 2.5 [rad/s] and 0.5 [10−3m] of the foring frequenies and amplitudes respetively.

For eah box in the grid we perform 500 trials of diret numerial integration. Eah time we randomly

pik the initial onditions from the aessible ranges and draw the values of A and ω from the ranges assigned

to the grid box. For every trial we reognize the �nal attrator that is reahed by the system. In a proedure

desribed above, we obtain a large data set of 172, 500 Monte Carlo trials that we use to haraterize the

possible behaviours of the system.

The data enable us to estimate the ranges of stability for eah onsidered attrator. For that purpose,

we detet all the trajetories that go to the investigated attrator and mark the parameters value (A and
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ω) for whih it has been approahed. Then, we plot those values as a set of points in the (A, ω) plane that
indiates the region of stability of the investigated solution. In Fig. 2() we present the outome of suh

analysis for 1 : 2 osillations. Apart from that, the olleted data enable us to alulate the maps of basin

stability in the two parameter spae, as shown in Fig. 2(f) where we show the probability of ourrene of

the onsidered solution in eah of 345 boxes.

0.4. Presentation of the results

For every deteted solution we get the boundaries of stability using the above methods. To show all

of the obtained results and ensure an easy omparison between the methods, we need to develop a lever

presentation sheme. In Fig. 2 we present the results yielded for 1 : 2 osillations to explain the presentation

sheme used throughout the paper. Arrows in Fig. 2 show how the data are interhanged between the

panels.

We start with the path-following method. Panel (a) presents the one parameter ontinuation performed

to detet the bifuration points in whih the stability of the solution hanges. We perform two parameter

ontinuation for these points, as shown in panel (d). We also mark the region of stability with a oloured

area. In panel (b) we show the experimental results, while in panels () and (f) we present the outome of

the sample-based approah. We plot a single olour dot (here purple) eah time the investigated solution is

reahed in a trial. The extended basin stability approah provides a basin stability map shown in panel (f).

Suh plot enables us to detet where the solution is more likely to appear due to the inreased basin stability.

Moreover, thanks to the lattie, we maintain a onsistent level of error (smaller than 2.25%) beause in eah

box we have 500 Bernoulli trials.

To simplify the omparison between the results obtained with di�erent analysis approahes, we ombine

the results from panels (d), (b) and () in a single plot suh as Fig. 2 (e). However, we think that the maps

of basin stability provide an additional knowledge about the attrator stability. Hene, for eah solution we

present two diagrams orresponding to panels (e) and (f). To underline this fat we mark these two panels

with a dashed line retangle.
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Figure 2: Presentation sheme for the stability analysis obtained using di�erent approahes for 1 : 2 osillatory solution. Panels

(a,d) were obtained from the ontinuation of a periodi solution, in panel (b) we present experimental data and in panels (,f)

the results obtained with a sample-based method. In subplot () we ompare the three approahes. Abbreviation used in

panel (a) indiate the following bifurations: PD - period doubling, SB - symmetry breaking pithfork and BB - branhing

point where the equilibrium destabilizes and lower pendulum starts to move. Points where the bifurations our in panels (a)

and (d) are marked with apital letters A-D. Heneforth, we will use two �gures suh as panels (e) and (f) to provide ritial

omparison between the methods.

Results

The aim of our investigations is to ompare di�erent analysis approahes and experimentally validate

the auray of the sample-based method. In this setion we provide a thorough presentation of the results

obtained using the path-following method, experimental investigations and the extended basin stability

tehnique. We fous on the detetion of the ranges of stability for 9 solutions mentioned in previous setion.

Moreover, we supplement the results with basin stability maps that enable us to quantify the stability and

indiate the ranges of parameter values for whih it is more likely that given solution ours.

Ranges of stability

We investigate the boundaries of stability for 9 di�erent solutions that oexist in a wide range of the

parameter values. The results are presented in Fig. 3 using the presentation sheme desribed in subsetion

"Presentation of the results".

In panel (a) of Fig. 3 we show the results obtained for 1 : 1 osillations of the vertial pendulum with

very small amplitude (typially this solution is reported as a semi-trivial one, beause in the system with

signi�antly larger damping the motion of the vertial pendulum would be not or barely observable). This
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solution is stable in the whole analysed range of the parameter values exept the narrow resonane tongue

that ours for ω = 20 [rad/s]. The position of the branhing bifuration lines have been deteted by

path-following and on�rmed using both experimental analysis and sample-based approah. The agreement

between the results obtained using all three approahes is remarkably good.

The seond analysed solution is 1 : 2 osillations whih orresponds to the resonane tongue (around ω =
20 [rad/s]). The results are shown in Fig. 3(b). The path following analysis reveals that this solution loses

its stability either in a saddle node bifuration (for A ≤ 5 [10−3m]) or in a symmetry braking bifuration (for

A > 5 [10−3m]) that is immediately followed by a asade of period doubling bifurations. The experimental

analysis on�rms that the position of the right-hand side border of the resonane tongue has been obtained

with an exellent preision. However, the deteted range of stability di�ers from the results obtained via the

numerial ontinuation. The di�erene is espeially visible for A = 4 [10−3m] (in horizontal diretion) and

for ω = 16 [rad/s] in vertial diretion. In these ases the sample-based method enables a better preision,

espeially when deteting the left-hand side border of stability. We see that the density of points dereases

signi�antly before the bifuration lines are reahed. Thus using the sample-based approah we an better

predit the range in whih we are able to obtain 1 : 2 osillations.

The third analysed solution (panel ()) is 1 : 3 osillations. Here, the results from both methods of

analysis are in good agreement with the experimental data. Similarly, for 1 : 6 osillations (panel (e)) and

1 : 8 osillations (panel (f)) we observe a onurrene of the results from all the applied methods. The

di�erene between the experimental and numerial results is learly distinguishable only in two ases. The

experimental investigation revealed that the 1 : 6 osillations an be ahieved also below the line deteted

using the path-following method. Also, the position of a period doubling bifuration whih destroys the

stability of 1 : 8 osillations is di�erent from what we observe experimentally. We think that the di�erene

between the numerial results and the experiment mainly omes from the dissipation modelling approah

whih strongly simpli�es this phenomenon. In panel (d) we show the results that orrespond to 1 : 4
osillations. For this solution, with the Monte Carlo approah an obtain the boundary of stability that

is loser to the experimental results then the bifuration lines obtained via numerial ontinuation. It is

espeially visible for the left and the lower boundaries in the (A, ω) plane.
The last three solutions presented in panels (g,h,i) orrespond to 1 : 1, 1 : 2 and 1 : 3 rotations

respetively. For all rotary solutions we see a good onvergene between the experiments and the results

obtained using both numerial methods.
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Figure 3: Comparison between the ranges of stability obtained using the path-following method (olour lines), the sample-based

approah (dots) and the experimental investigation (blak lines). Eah panel orrespond to a di�erent solution. Colour line

type depits the type of bifuration.

The results presented in Fig. 3 prove that for the onsidered system the path-following method and

the sample-based approah o�er similar auray when ompared to experimental results. The important

advantage of the sample-based approah is that during a large number of trials we are able to detet hidden

attrators [5℄ or solutions with rather meager basins of attration. In the investigated ase we also found

solutions that ourred only one for 172, 500 trials, suh as for example 2 : 5 osillations or 3 : 15 rotations.
Moreover, analysing Fig. 3, we see that with the sample-based approah we �nd the regions with the

maximum density of points. This, in onsequene enables to quantify the stability for di�erent values of

parameters using the basin stability measure. To further investigate this topi for eah solution we obtain

maps indiating the hanges of basin stability in the two-parameter spae.
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Basin stability maps

The results presented in the previous subsetion indiate that we are able to ahieve omparable preision

using the sample-based approah. Now, we show the additional information that an be obtained with

extended basin stability method [1℄. In Fig. 4 we demonstrate the hanges of basin stability in the two

parameter spae for the 9 onsidered solutions. We present the results in the grid in whih the alulations

were performed. For all presented diagrams we hold the same olour sale for the basin stability that is

given at the bottom of Fig. 4.

Panel (a) refers to the 1 : 1 osillations whih has the largest range of stability (see Fig. 3(a) ). The

plot reveals that also in the large range of parameters this solution has the dominant volume of the basin of

attration. Analysing the panels (b-f) whih orrespond to the osillatory solutions, we �nd that for most of

them basin stability alulated in the assumed grid never exeeds 30%. Still, for 1 : 2 and 1 : 4 osillations

we unover regions with higher basin stability. For rotary solutions (panels (g-i)) we observe the similar

tendeny and the basin stability exeeds 15% only for 1 : 1 rotations .

Comparing all the diagrams in Fig. 3, we an divide the onsidered range of parameter values into three

regions:

1. The range where the semi-trivial solution has the dominant basin of attration (see panel (a)).

2. The resonane tongue of 1 : 2 osillations in whih this solution has the biggest volume of the basin

(panel (b)).

3. The region where, we observe the oexistene of many stable solutions and the 1 : 1 rotations has the

dominant basin of attration in most of that region (panel (g)).

Using the data obtained in a large series of trials we an use an interpolation and draw the ontinuous maps

of basin stability (not using the lattie). We hose to present the data in the grid in order to maintain a

similar level of error and to indiate the methodology of our approah. Despite the presentation method,

basin stability maps enable to detet where the given solution has the biggest relative volume of the basin

of attration. This in onsequene, refers to the ranges in parameter spae for whih the solution is more

likely to appear. Therefore, suh diagrams have strong pratial signi�ane.

Investigation of the system with parameters mismath

In pratial appliations we often annot obtain the exat values of the system's parameters. It is

espeially di�ult when the model ontains parameters whose values annot be measured diretly suh as,

for example, a value of the visous damping oe�ient in a pin joint. Apart from that, when modelling the

mehanial and strutural objets, we often simplify omplex phenomena using simple models. This an

derease the auray of simulations and ause the divergene between numerial and experimental results.

In this setion we show that the extended basin stability method an be applied without the knowledge of

atual parameter values and still maintain the high auray of the yielded results.

Let us assume that we do not know preisely the values of some parameters of the system. In a lassial

approah, we have to set their values whih may lead to wrong results. In the sample-based approah,

instead of setting a value of the parameter, we an estimate the range to whih this parameter belongs.

Then, during a series of trials we draw the values of unertain parameters. Before we apply that to our

problem, we divide the parameters of our system (Eq. 1) into four spei� groups basing on the ease of

measurements:

1. Parameters that are easy to measure: m1, m2, l1, x1. This group ontains the parameters that an

be determined easily with good preision, namely masses and lengths of the physial objets. During

alulations we assume that we determined values of these parameters preisely and do not draw them.

2. Parameters that an be estimated with good preision: J1, J2, d1, d2, k. The methods to measure

these parameters values are not straight forward. In this group there are also parameters whose values

are given by manufaturer with ertain preision - as for example the sti�ness of the spring. We assume

that the error for the parameters from that group is ±5% and for eah trial we draw the values of

parameters from a ertain range.
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Figure 4: Two parameters maps of the basin stability for the 9 investigated solutions. The grid orresponds to the lattie used

during the alulations. Below is the ommon basin stability sale used for all 9 panels.
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3. Parameters that are di�ult to estimate: c1, c2. In this group we put parameters that require omplex

proedures or approah to infer their values and parameters that refers to phenomena that are di�ult

to model, suh as energy dissipation. Values of parameters from this group are drawn from the range

〈−120%, 120%〉 of the estimated value.

4. Parameters whose speial in�uene we investigate: A, ω. The aim of the study is to analyse the

in�uene of these parameters on the stability of solutions. For these parameters we do not estimate

the error. Instead, we draw values of these parameters from a �grid� as desribed in the Methods

setion.

Apart from the above, we want to maintain the value of the natural frequeny of the seond pendulum

whih an be easily measured using a simple stopwath. For that purpose, we draw the inertia of the seond

pendulum and realulate the position of its entre of gravity to preserve the natural frequeny.

With the above assumptions we repeat all the alulations. In Fig. 5 we present the omparison between

the results obtained with �xed values of parameters and when drawing the parameter values. In the upper

row of Fig. 5 we show the results that refer to 1 : 2 osillations and in the lower row 1 : 3 osillations.

In panels (a) and (e) we show the results from Monte Carlo method with �xed parameters and in (b) and

(f) the points obtained when drawing the parameter values. Similarly, we ompare the maps of the basin

stability for �xed parameters (,g) and obtained with the assumed mismath (d,h). Results that refer to the

remaining 7 solutions are presented in the supplement material.

The di�erene in the results from the extended basin stability analysis are barely visible despite the fat,

that the positions of the bifuration lines hange when we modify the parameter values within the assumed

ranges . This shows that the sample-based approah an be applied even without time onsuming detailed

measurements of the system's parameters and still ensures sensible results. Instead of preisely measure the

parameter values, we only have to asses the preision for eah of the determined parameter.

Conlusions

In this paper we present a ritial omparison between the results obtained using the extended basin

stability method, the path-following bifuration analysis and experimental data. We investigate the double

pendulum system whih is a model of an existing experimental rig. It is a multistable system in whih 9
di�erent periodi solutions have been deteted.

For eah solution we use the path-following method to determine its range of stability in the two pa-

rameter spae, namely the amplitude and the frequeny of exitation. Then, we perform the experimental

investigations for the same purpose. The obtained two parameter bifuration diagrams allow us two de-

termine ranges of stability and detet bifurations that lead to destabilization of the investigated orbits.

Finally, we apply the extended basin stability analysis to determine the ranges of stability and two param-

eters basin stability maps. Our results from both numerial methods are in a remarkably good agreement

with the experimental data.

In omparison to lassial methods the advantage of the presented method is that it enables us to analyse

the in�uene of several parameters simultaneously. The omputational e�ort does not inrease signi�antly

with the dimensions of the system. Moreover, the method enables us to detet hidden attrators and

solutions with rather meagre basins of attration. The method only requires an e�ient numerial integration

algorithm. There is no need of spei� knowledge or software to use this method. The usefulness of a

sample-base method is espeially visible in higher dimensional systems where the lassial analysis requires

a preliminary study to know the initial onditions, the shape of periodi solutions, the proper ross-setions

of the phase spae, while the extended basin stability method an be applied straightforward without suh

spei� knowledge.

Another advantage of the presented approah is that the olleted data allow to quantify the stability

of eah attrator and prepare the two parameter basin stability maps. Suh diagrams enable to detet the

ranges in parameter spae for whih the solution is more likely to appear due to a large volume of the basin

of attration and have strong pratial signi�ane.
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Figure 5: Comparison between the results obtained from the model with and without the parameters mismath. Panels

(a,,e,g) presents the results from sample-based approah with �xed parameters while panels (b,d,f,h) with parameters mismath

(parameters are drawn from the assumed ranges).
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In the last part of the work we repeat the basin stability analysis under unertainties in the parameter

values. The obtained results do not di�er signi�antly from the original data, hene we laim that the

proposed method an be applied even without the preise knowledge of the parameters values whih is a

unique feature.

The above advantages predispose the sample-based approah for the analysis of multistable systems with

large phase spae dimensions and multiple o-existing attrators. Future appliation perspetives inlude

espeially analysis of large networks like power grids or simulations of brain dynamis

The presented results are the �rst broad omparison between the path-following method, the basin

stability approah and the experimental investigation. We show that the sample-based methods are a

reliable tool for the analysis of omplex dynamial systems. Moreover, we prove that the extended basin

stability method has signi�ant advantages whih make it robust and appropriate for many appliations in

whih lassial analysis methods are di�ult to apply.
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