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Abstra
t

In this paper we show the �rst broad experimental 
on�rmation of the basin stability approa
h. The

basin stability is one of the sample-based approa
h methods for analysis of the 
omplex, multidimensional

dynami
al systems. We show that investigated method is a reliable tool for the analysis of dynami
al

systems and we prove that it has a signi�
ant advantages whi
h make it appropriate for many appli
ations

in whi
h 
lassi
al analysis methods are di�
ult to apply. We study theoreti
ally and experimentally the

dynami
s of a for
ed double pendulum. We examine the ranges of stability for nine di�erent solutions of

the system in a two parameter spa
e, namely the amplitude and the frequen
y of ex
itation. We apply the

path-following and the extended basin stability methods (Brzeski et. al., Me

ani
a 51(11), 2016) and we

verify obtained theoreti
al results in experimental investigations. Comparison of the presented results show

that the sample-based approa
h o�ers 
omparable pre
ision to the 
lassi
al method of analysis. However,

it is mu
h simpler to apply and 
an be used despite the type of dynami
al system and its dimensions.

Moreover, the sample-based approa
h has some unique advantages and 
an be applied without the pre
ise

knowledge of parameter values.

Introdu
tion

There is a ri
h variety of di�erent mathemati
al tools to analyze nonlinear dynami
al systems. Still,

more sophisti
ated methods are usually di�
ult to apply. For example, there are a number of di�erent

toolboxes that enable the path-following analysis but their fun
tionality is stri
tly limited to the type of the

investigated system and its dimensionality. The dynami
al analysis is espe
ially 
hallenging for multistable

systems, where we have to 
onsider multiple steady states that 
oexist in the phase spa
e. It is a 
hallenging

problem and multistability is widely studied in many dis
iplines [20, 11, 12, 7, 21, 17, 16, 4℄. Therefore, also

new tools to analyze multistable systems are being developed.

In 2013 Men
k et al. proposed a basin stability measure that uses Bernoulli trials to estimate the volume

of a basin of attra
tion [15℄. Despite it is new, the method was already su

essfully applied in numerous

di�erent appli
ations [14, 9, 8, 10℄. In 2016 another new tools to investigate multistable systems were

proposed, namely survivability [6℄ that in
ludes the analysis of the transient motion and basin entropy [2℄

that measures the basin 
ompa
tness.

The growing interest in sample-based methods 
omes from two main advantages. They 
an be easily

applied to all types of systems and reprodu
e the inherent un
ertainty of perturbations. To apply these

methods, we just need to have a reliable dire
t numeri
al integration 
ode for the mathemati
al model. Also

the 
omputational e�ort does not grow signi�
antly with the in
rease of the phase spa
e dimensions. This

makes su
h sample-based methods even more appealing for the analysis of very high-dimensional systems

su
h as large networks of os
illators, power grids [18℄ or brain dynami
s [13℄. However, up to this moment

Preprint submitted to Elsevier May 24, 2017



there is a la
k of experimental studies whi
h enable to 
ompare the a

ura
y of these methods and 
lassi
al

analysis.

Re
ently [1℄ we des
ribed an extended basin stability approa
h by taking into a

ount mismat
h in

parameter values. This has pra
ti
al fundamentals be
ause all parameters values are measured or estimated

with some �nite pre
ision and 
an slightly vary even during normal operation. In this paper, we expand

our approa
h and perform an analysis in a two parameter spa
e. We 
ompare the results from sample-

based analysis with detailed two parameter bifur
ation diagrams obtained using the path-following method.

Finally, we 
onfront both methods with experimental data that we use as a ben
hmark. This is done for 9
di�erent periodi
 solutions that 
oexist in a notably wide range of the parameter values. The results enable

us to 
riti
ally 
ompare the a

ura
y of both methods and show their strengths and weaknesses. Apart from

that, we show that the sample-based approa
h 
an be applied without a pre
ise knowledge of parameter

values and it gives sensible results.

Model of system

We 
onsider the spe
i�
 type of a double pendulum (see Fig. 1) whi
h is a paradigmati
 example in

nonlinear dynami
s. The �rst pendulum rod is mounted horizontally and 
onne
ted to the base with a pin

joint at one end and via a spring on the se
ond end. Hen
e, it 
an only os
illate. The se
ond pendulum is


onne
ted to the �rst one with a rotational pivot at the distan
e x1 between both pin joints. The support is

mounted on a shaker and ex
ited kinemati
ally in the verti
al dire
tion. This system is a modi�ed version

of the rig 
onsidered by Strzalko et al. [19℄ and Dudkowski et al. [4℄.

The angular displa
ements of the �rst and the se
ond pendulum are given by ϕ1 and ϕ2 respe
tively. The

shaker ex
ites the system kinemati
ally with a harmoni
 fun
tion of the amplitude A and frequen
y ω. The
upper pendulum has the length l1, the mass m1, the moment of inertia J1 and the 
entre of gravity lo
ated

at the distan
e d1 from its pin joint. The sti�ness of the spring that supports the end of the pendulum is

given by k. The se
ond pendulum has the mass m2, the moment of inertia J2 and the 
entre of gravity

lo
ated at d2 from its pin joint. Due to the relatively small damping in the system we negle
t e�e
ts of dry

fri
tion and other non-linearities of damping 
hara
teristi
s and in both pivots we assume the vis
oelasti


damping. Hen
e, for the �rst pendulum the damping 
oe�
ient is given by c1 and for the se
ond one by c2.
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Figure 1: The physi
al model of the 
onsidered double pendulum ex
ited kinemati
ally (Eq. 1) with its parameters.

The equations of motion of the system shown in Fig. 1 are given by the following se
ond order ODEs:
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(1)

The parameters have the following values: J1 = 4.524 [10−3kgm2], m1 = 0.5562 [kg], l1 = 0.315 [m],
d1 = 0.180 [m], x1 = 0.153 [m], c1 = 0.05 [Nms], k = 6850 [N ], J2 = 4.469 [10−5kgm2], m2 = 0.02077 [kg],
d2 = 0.063 [m], c1 = 7 [10−6Nms], g = 9.81 [m

s2
]. All the parameter values were determined in a series of

dedi
ated experiments.

Methods

We 
ompare the results obtained by using two di�erent approa
hes and validate them with experiments.

As aforementioned, the 
onsidered system is a double pendulum for
ed kinemati
ally in verti
al dire
tion

(Eq. 1). As 
ontrolling parameters we take the amplitude A and the frequen
y ω of the external ex
itation.

The system is multistable, hen
e we observe a 
oexisten
e of solutions for �xed parameter values. Di�erent

solutions stabilize and destabilize when varying the amplitude and/or frequen
y of ex
itation. The aim of our

study is to investigate the ranges of attra
tors' stability in the (A, ω) plane. We start with the path-following

method to get a pre
ise boundaries of solutions' stability. Then, for ea
h solution we perform experiments.

Finally, we apply the sample-based approa
h (the extended basin stability method [1℄) to determine the

ranges of parameters for whi
h the given solution 
an be obtained. In the following subse
tions, we des
ribe

the applied methods and explain the s
heme in whi
h we present the results. This is 
ru
ial be
ause

we present and 
ompare a large amount of results obtained with various methods. Due to limitations of

the experimental rig, the maximum value of the amplitude of ex
itation is Amax = 7.7 [10−3m] (higher
amplitudes of the shaker are impossible to a
hieve). Similarly, we 
onsider the frequen
y of ex
itation in the

range ωǫ 〈0, 60〉 [rad/s], be
ause for higher values the a

essible amplitude of the ex
itation Amax is rapidly

dropping.

0.1. Path-following analysis

In numeri
al study we 
onsider the following ranges of the amplitude Aǫ 〈0, 7.7〉 [10−3m] and the fre-

quen
y of ex
itation ωǫ 〈0, 60〉 [rad/s]. We perform path-following analysis for 9 di�erent solutions. The

upper pendulum always performs an os
illatory motion, while for the se
ond pendulum we observe both os-


illations and rotations with di�erent lo
king ratios in respe
t to the frequen
y of the ex
itation. Therefore,

we name ea
h solution basing on the behaviour of the se
ond pendulum and ratio n : m whi
h means that

for m periods of ex
itation we observe n full os
illations or rotations of the se
ond pendulum. We dete
ted

and further 
onsider: 1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 6, 1 : 8 os
illations, and 1 : 1, 1 : 2, 1 : 3 rotations.

For all 9 
onsidered solutions we perform the path-following analysis by using the AUTO-07p software [3℄.
Ea
h time we start with a dire
t numeri
al integration to prepare the initial periodi
 solution for 
ontinuation.

Then, we start with one parameter 
ontinuation using A or ω as a 
ontinuation parameter. We dete
t the

boundaries of stability and perform 
ontinuation of the bifur
ation points in two parameter spa
e. In Fig. 2

(a,d,e) we present the sample results obtained this way (for 1 : 2 os
illations). For ea
h 
onsidered solution

we use di�erent 
olour of lines and di�erentiate the line type for di�erent types of bifur
ations. For saddle-

node (SN) bifur
ations we use 
ontinuous lines, for bran
hing bifur
ations (BB) dash-dotted, for symmetry

breaking (SB) dotted and for period doubling (PD) dashed lines. In the investigated system (Eq. 1) we

often en
ounter a period doubling 
as
ade. In su
h 
ases we indi
ate only the �rst and the se
ond period

doubling bifur
ations.
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0.2. Experimental investigation

For the solutions dete
ted numeri
ally, we experimentally �nd the boundaries of the stability in the two

parameter spa
e (A, ω). The starting points for the experimental study are lo
ated far from the boundary

of stability to ensure that the given solution is rea
hable experimentally. Depending on the shape and area

of the stability range, we sele
t from one to seven starting points and for ea
h apply the following pro
edure:

• We start the for
ing with the amplitude and the frequen
y of the ex
itation taken from numeri
al

results and try to rea
h the given solution by applying proper initial 
onditions to the se
ond pendulum.

The knowledge of the time tra
e of the solution from AUTO-07p software helps us to apply the 
orre
t

initial state.

• When the system rea
hes the presumed state we mark the amplitude and the frequen
y of ex
itation.

These are the 
oordinates of a starting point in the two parameter spa
e. Su
h points are marked with

bla
k dots in Fig. 2(b,e).

• Then, we slowly 
hange the value of the frequen
y or the amplitude of for
ing with small steps (minimal

step in frequen
y is 2π × 10−3 [rad/s] and in amplitude 0.01 [m]). After ea
h step we wait to 
he
k if

the system remains on the presumed attra
tor. The range of the parameter value where the solution

stays stable is marked as a tra
e with a bla
k line in Fig. 2 (b,e).

• Eventually, we rea
h the parameter value for whi
h the solution be
omes unstable and the system

jumps to a di�erent attra
tor. We note the amplitude and the frequen
y of ex
itation for whi
h the

solution 
hanged.

• We repeat the above steps four times and 
ompute the average values of parameters for whi
h the

solution looses its stability. We take this value as the boundary of stability and mark it with the

perpendi
ular end of the stability tra
e (see Fig. 2 (b,e).

To estimate the position of a line that indi
ates the boundary of stability obtained by the path-following

method in the two parameter spa
e (A, ω), we repeat the above pro
edure for di�erent starting points. We

dete
t the ranges of stability for all 9 en
ountered solutions whi
h required enormous e�ort and a lot of

time.

0.3. Extended basin stability approa
h

Now we apply the extended basin stability approa
h des
ribed in our re
ent work [1℄. To start with, we

have to estimate the ranges of initial 
onditions that 
an be applied on our experimental rig. In a number of

dedi
ated experiments we de�ned the a

essible ranges of initial 
onditions that des
ribe physi
al restri
tions

of our rig: ϕ1ǫ 〈−0.0015, 0.0015〉 [rad], ϕ2ǫ 〈−π, π〉 [rad], ϕ̇1ǫ 〈−1.2, 1.2〉 [rad/s], ϕ̇2ǫ 〈−60, 60〉 [rad/s].
Then, we divide the 
onsidered ranges of parameter values into a regular two dimensional grid in the

following way: for the frequen
y of ex
itation (ωǫ 〈0, 60〉 [rad/s]) we assume 23 subsets with equal width of

2.5 [rad/s]. We intentionally omit extremely small values of ω and start from the range〈1.25, 3.75〉 [rad/s]
(for �rst 
olumn of the grid) and �nish with 〈56.25, 58.75〉 [rad/s] (for the last 
olumn). For the ampli-

tude of for
ing Aǫ 〈0, 7.7〉 [10−3m] we take 15 equally spa
ed subsets with the step of 0.5 [10−3m]. Here,

we also ignore values near the a

essible boundaries and start the lower row of the grid with the range of

〈0.25, 0.75〉 [10−3m] and �nish the grid with 〈7.25, 7.75〉 [10−3m]. By that, we re
eive a latti
e of 345 boxes
ea
h 
overing the range of 2.5 [rad/s] and 0.5 [10−3m] of the for
ing frequen
ies and amplitudes respe
tively.

For ea
h box in the grid we perform 500 trials of dire
t numeri
al integration. Ea
h time we randomly

pi
k the initial 
onditions from the a

essible ranges and draw the values of A and ω from the ranges assigned

to the grid box. For every trial we re
ognize the �nal attra
tor that is rea
hed by the system. In a pro
edure

des
ribed above, we obtain a large data set of 172, 500 Monte Carlo trials that we use to 
hara
terize the

possible behaviours of the system.

The data enable us to estimate the ranges of stability for ea
h 
onsidered attra
tor. For that purpose,

we dete
t all the traje
tories that go to the investigated attra
tor and mark the parameters value (A and
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ω) for whi
h it has been approa
hed. Then, we plot those values as a set of points in the (A, ω) plane that
indi
ates the region of stability of the investigated solution. In Fig. 2(
) we present the out
ome of su
h

analysis for 1 : 2 os
illations. Apart from that, the 
olle
ted data enable us to 
al
ulate the maps of basin

stability in the two parameter spa
e, as shown in Fig. 2(f) where we show the probability of o

urren
e of

the 
onsidered solution in ea
h of 345 boxes.

0.4. Presentation of the results

For every dete
ted solution we get the boundaries of stability using the above methods. To show all

of the obtained results and ensure an easy 
omparison between the methods, we need to develop a 
lever

presentation s
heme. In Fig. 2 we present the results yielded for 1 : 2 os
illations to explain the presentation

s
heme used throughout the paper. Arrows in Fig. 2 show how the data are inter
hanged between the

panels.

We start with the path-following method. Panel (a) presents the one parameter 
ontinuation performed

to dete
t the bifur
ation points in whi
h the stability of the solution 
hanges. We perform two parameter


ontinuation for these points, as shown in panel (d). We also mark the region of stability with a 
oloured

area. In panel (b) we show the experimental results, while in panels (
) and (f) we present the out
ome of

the sample-based approa
h. We plot a single 
olour dot (here purple) ea
h time the investigated solution is

rea
hed in a trial. The extended basin stability approa
h provides a basin stability map shown in panel (f).

Su
h plot enables us to dete
t where the solution is more likely to appear due to the in
reased basin stability.

Moreover, thanks to the latti
e, we maintain a 
onsistent level of error (smaller than 2.25%) be
ause in ea
h

box we have 500 Bernoulli trials.

To simplify the 
omparison between the results obtained with di�erent analysis approa
hes, we 
ombine

the results from panels (d), (b) and (
) in a single plot su
h as Fig. 2 (e). However, we think that the maps

of basin stability provide an additional knowledge about the attra
tor stability. Hen
e, for ea
h solution we

present two diagrams 
orresponding to panels (e) and (f). To underline this fa
t we mark these two panels

with a dashed line re
tangle.
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Figure 2: Presentation s
heme for the stability analysis obtained using di�erent approa
hes for 1 : 2 os
illatory solution. Panels

(a,d) were obtained from the 
ontinuation of a periodi
 solution, in panel (b) we present experimental data and in panels (
,f)

the results obtained with a sample-based method. In subplot (
) we 
ompare the three approa
hes. Abbreviation used in

panel (a) indi
ate the following bifur
ations: PD - period doubling, SB - symmetry breaking pit
hfork and BB - bran
hing

point where the equilibrium destabilizes and lower pendulum starts to move. Points where the bifur
ations o

ur in panels (a)

and (d) are marked with 
apital letters A-D. Hen
eforth, we will use two �gures su
h as panels (e) and (f) to provide 
riti
al


omparison between the methods.

Results

The aim of our investigations is to 
ompare di�erent analysis approa
hes and experimentally validate

the a

ura
y of the sample-based method. In this se
tion we provide a thorough presentation of the results

obtained using the path-following method, experimental investigations and the extended basin stability

te
hnique. We fo
us on the dete
tion of the ranges of stability for 9 solutions mentioned in previous se
tion.

Moreover, we supplement the results with basin stability maps that enable us to quantify the stability and

indi
ate the ranges of parameter values for whi
h it is more likely that given solution o

urs.

Ranges of stability

We investigate the boundaries of stability for 9 di�erent solutions that 
oexist in a wide range of the

parameter values. The results are presented in Fig. 3 using the presentation s
heme des
ribed in subse
tion

"Presentation of the results".

In panel (a) of Fig. 3 we show the results obtained for 1 : 1 os
illations of the verti
al pendulum with

very small amplitude (typi
ally this solution is reported as a semi-trivial one, be
ause in the system with

signi�
antly larger damping the motion of the verti
al pendulum would be not or barely observable). This
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solution is stable in the whole analysed range of the parameter values ex
ept the narrow resonan
e tongue

that o

urs for ω = 20 [rad/s]. The position of the bran
hing bifur
ation lines have been dete
ted by

path-following and 
on�rmed using both experimental analysis and sample-based approa
h. The agreement

between the results obtained using all three approa
hes is remarkably good.

The se
ond analysed solution is 1 : 2 os
illations whi
h 
orresponds to the resonan
e tongue (around ω =
20 [rad/s]). The results are shown in Fig. 3(b). The path following analysis reveals that this solution loses

its stability either in a saddle node bifur
ation (for A ≤ 5 [10−3m]) or in a symmetry braking bifur
ation (for

A > 5 [10−3m]) that is immediately followed by a 
as
ade of period doubling bifur
ations. The experimental

analysis 
on�rms that the position of the right-hand side border of the resonan
e tongue has been obtained

with an ex
ellent pre
ision. However, the dete
ted range of stability di�ers from the results obtained via the

numeri
al 
ontinuation. The di�eren
e is espe
ially visible for A = 4 [10−3m] (in horizontal dire
tion) and

for ω = 16 [rad/s] in verti
al dire
tion. In these 
ases the sample-based method enables a better pre
ision,

espe
ially when dete
ting the left-hand side border of stability. We see that the density of points de
reases

signi�
antly before the bifur
ation lines are rea
hed. Thus using the sample-based approa
h we 
an better

predi
t the range in whi
h we are able to obtain 1 : 2 os
illations.

The third analysed solution (panel (
)) is 1 : 3 os
illations. Here, the results from both methods of

analysis are in good agreement with the experimental data. Similarly, for 1 : 6 os
illations (panel (e)) and

1 : 8 os
illations (panel (f)) we observe a 
on
urren
e of the results from all the applied methods. The

di�eren
e between the experimental and numeri
al results is 
learly distinguishable only in two 
ases. The

experimental investigation revealed that the 1 : 6 os
illations 
an be a
hieved also below the line dete
ted

using the path-following method. Also, the position of a period doubling bifur
ation whi
h destroys the

stability of 1 : 8 os
illations is di�erent from what we observe experimentally. We think that the di�eren
e

between the numeri
al results and the experiment mainly 
omes from the dissipation modelling approa
h

whi
h strongly simpli�es this phenomenon. In panel (d) we show the results that 
orrespond to 1 : 4
os
illations. For this solution, with the Monte Carlo approa
h 
an obtain the boundary of stability that

is 
loser to the experimental results then the bifur
ation lines obtained via numeri
al 
ontinuation. It is

espe
ially visible for the left and the lower boundaries in the (A, ω) plane.
The last three solutions presented in panels (g,h,i) 
orrespond to 1 : 1, 1 : 2 and 1 : 3 rotations

respe
tively. For all rotary solutions we see a good 
onvergen
e between the experiments and the results

obtained using both numeri
al methods.
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Figure 3: Comparison between the ranges of stability obtained using the path-following method (
olour lines), the sample-based

approa
h (dots) and the experimental investigation (bla
k lines). Ea
h panel 
orrespond to a di�erent solution. Colour line

type depi
ts the type of bifur
ation.

The results presented in Fig. 3 prove that for the 
onsidered system the path-following method and

the sample-based approa
h o�er similar a

ura
y when 
ompared to experimental results. The important

advantage of the sample-based approa
h is that during a large number of trials we are able to dete
t hidden

attra
tors [5℄ or solutions with rather meager basins of attra
tion. In the investigated 
ase we also found

solutions that o

urred only on
e for 172, 500 trials, su
h as for example 2 : 5 os
illations or 3 : 15 rotations.
Moreover, analysing Fig. 3, we see that with the sample-based approa
h we �nd the regions with the

maximum density of points. This, in 
onsequen
e enables to quantify the stability for di�erent values of

parameters using the basin stability measure. To further investigate this topi
 for ea
h solution we obtain

maps indi
ating the 
hanges of basin stability in the two-parameter spa
e.
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Basin stability maps

The results presented in the previous subse
tion indi
ate that we are able to a
hieve 
omparable pre
ision

using the sample-based approa
h. Now, we show the additional information that 
an be obtained with

extended basin stability method [1℄. In Fig. 4 we demonstrate the 
hanges of basin stability in the two

parameter spa
e for the 9 
onsidered solutions. We present the results in the grid in whi
h the 
al
ulations

were performed. For all presented diagrams we hold the same 
olour s
ale for the basin stability that is

given at the bottom of Fig. 4.

Panel (a) refers to the 1 : 1 os
illations whi
h has the largest range of stability (see Fig. 3(a) ). The

plot reveals that also in the large range of parameters this solution has the dominant volume of the basin of

attra
tion. Analysing the panels (b-f) whi
h 
orrespond to the os
illatory solutions, we �nd that for most of

them basin stability 
al
ulated in the assumed grid never ex
eeds 30%. Still, for 1 : 2 and 1 : 4 os
illations

we un
over regions with higher basin stability. For rotary solutions (panels (g-i)) we observe the similar

tenden
y and the basin stability ex
eeds 15% only for 1 : 1 rotations .

Comparing all the diagrams in Fig. 3, we 
an divide the 
onsidered range of parameter values into three

regions:

1. The range where the semi-trivial solution has the dominant basin of attra
tion (see panel (a)).

2. The resonan
e tongue of 1 : 2 os
illations in whi
h this solution has the biggest volume of the basin

(panel (b)).

3. The region where, we observe the 
oexisten
e of many stable solutions and the 1 : 1 rotations has the

dominant basin of attra
tion in most of that region (panel (g)).

Using the data obtained in a large series of trials we 
an use an interpolation and draw the 
ontinuous maps

of basin stability (not using the latti
e). We 
hose to present the data in the grid in order to maintain a

similar level of error and to indi
ate the methodology of our approa
h. Despite the presentation method,

basin stability maps enable to dete
t where the given solution has the biggest relative volume of the basin

of attra
tion. This in 
onsequen
e, refers to the ranges in parameter spa
e for whi
h the solution is more

likely to appear. Therefore, su
h diagrams have strong pra
ti
al signi�
an
e.

Investigation of the system with parameters mismat
h

In pra
ti
al appli
ations we often 
annot obtain the exa
t values of the system's parameters. It is

espe
ially di�
ult when the model 
ontains parameters whose values 
annot be measured dire
tly su
h as,

for example, a value of the vis
ous damping 
oe�
ient in a pin joint. Apart from that, when modelling the

me
hani
al and stru
tural obje
ts, we often simplify 
omplex phenomena using simple models. This 
an

de
rease the a

ura
y of simulations and 
ause the divergen
e between numeri
al and experimental results.

In this se
tion we show that the extended basin stability method 
an be applied without the knowledge of

a
tual parameter values and still maintain the high a

ura
y of the yielded results.

Let us assume that we do not know pre
isely the values of some parameters of the system. In a 
lassi
al

approa
h, we have to set their values whi
h may lead to wrong results. In the sample-based approa
h,

instead of setting a value of the parameter, we 
an estimate the range to whi
h this parameter belongs.

Then, during a series of trials we draw the values of un
ertain parameters. Before we apply that to our

problem, we divide the parameters of our system (Eq. 1) into four spe
i�
 groups basing on the ease of

measurements:

1. Parameters that are easy to measure: m1, m2, l1, x1. This group 
ontains the parameters that 
an

be determined easily with good pre
ision, namely masses and lengths of the physi
al obje
ts. During


al
ulations we assume that we determined values of these parameters pre
isely and do not draw them.

2. Parameters that 
an be estimated with good pre
ision: J1, J2, d1, d2, k. The methods to measure

these parameters values are not straight forward. In this group there are also parameters whose values

are given by manufa
turer with 
ertain pre
ision - as for example the sti�ness of the spring. We assume

that the error for the parameters from that group is ±5% and for ea
h trial we draw the values of

parameters from a 
ertain range.
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Figure 4: Two parameters maps of the basin stability for the 9 investigated solutions. The grid 
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ale used for all 9 panels.
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3. Parameters that are di�
ult to estimate: c1, c2. In this group we put parameters that require 
omplex

pro
edures or approa
h to infer their values and parameters that refers to phenomena that are di�
ult

to model, su
h as energy dissipation. Values of parameters from this group are drawn from the range

〈−120%, 120%〉 of the estimated value.

4. Parameters whose spe
ial in�uen
e we investigate: A, ω. The aim of the study is to analyse the

in�uen
e of these parameters on the stability of solutions. For these parameters we do not estimate

the error. Instead, we draw values of these parameters from a �grid� as des
ribed in the Methods

se
tion.

Apart from the above, we want to maintain the value of the natural frequen
y of the se
ond pendulum

whi
h 
an be easily measured using a simple stopwat
h. For that purpose, we draw the inertia of the se
ond

pendulum and re
al
ulate the position of its 
entre of gravity to preserve the natural frequen
y.

With the above assumptions we repeat all the 
al
ulations. In Fig. 5 we present the 
omparison between

the results obtained with �xed values of parameters and when drawing the parameter values. In the upper

row of Fig. 5 we show the results that refer to 1 : 2 os
illations and in the lower row 1 : 3 os
illations.

In panels (a) and (e) we show the results from Monte Carlo method with �xed parameters and in (b) and

(f) the points obtained when drawing the parameter values. Similarly, we 
ompare the maps of the basin

stability for �xed parameters (
,g) and obtained with the assumed mismat
h (d,h). Results that refer to the

remaining 7 solutions are presented in the supplement material.

The di�eren
e in the results from the extended basin stability analysis are barely visible despite the fa
t,

that the positions of the bifur
ation lines 
hange when we modify the parameter values within the assumed

ranges . This shows that the sample-based approa
h 
an be applied even without time 
onsuming detailed

measurements of the system's parameters and still ensures sensible results. Instead of pre
isely measure the

parameter values, we only have to asses the pre
ision for ea
h of the determined parameter.

Con
lusions

In this paper we present a 
riti
al 
omparison between the results obtained using the extended basin

stability method, the path-following bifur
ation analysis and experimental data. We investigate the double

pendulum system whi
h is a model of an existing experimental rig. It is a multistable system in whi
h 9
di�erent periodi
 solutions have been dete
ted.

For ea
h solution we use the path-following method to determine its range of stability in the two pa-

rameter spa
e, namely the amplitude and the frequen
y of ex
itation. Then, we perform the experimental

investigations for the same purpose. The obtained two parameter bifur
ation diagrams allow us two de-

termine ranges of stability and dete
t bifur
ations that lead to destabilization of the investigated orbits.

Finally, we apply the extended basin stability analysis to determine the ranges of stability and two param-

eters basin stability maps. Our results from both numeri
al methods are in a remarkably good agreement

with the experimental data.

In 
omparison to 
lassi
al methods the advantage of the presented method is that it enables us to analyse

the in�uen
e of several parameters simultaneously. The 
omputational e�ort does not in
rease signi�
antly

with the dimensions of the system. Moreover, the method enables us to dete
t hidden attra
tors and

solutions with rather meagre basins of attra
tion. The method only requires an e�
ient numeri
al integration

algorithm. There is no need of spe
i�
 knowledge or software to use this method. The usefulness of a

sample-base method is espe
ially visible in higher dimensional systems where the 
lassi
al analysis requires

a preliminary study to know the initial 
onditions, the shape of periodi
 solutions, the proper 
ross-se
tions

of the phase spa
e, while the extended basin stability method 
an be applied straightforward without su
h

spe
i�
 knowledge.

Another advantage of the presented approa
h is that the 
olle
ted data allow to quantify the stability

of ea
h attra
tor and prepare the two parameter basin stability maps. Su
h diagrams enable to dete
t the

ranges in parameter spa
e for whi
h the solution is more likely to appear due to a large volume of the basin

of attra
tion and have strong pra
ti
al signi�
an
e.
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,e,g) presents the results from sample-based approa
h with �xed parameters while panels (b,d,f,h) with parameters mismat
h

(parameters are drawn from the assumed ranges).
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In the last part of the work we repeat the basin stability analysis under un
ertainties in the parameter

values. The obtained results do not di�er signi�
antly from the original data, hen
e we 
laim that the

proposed method 
an be applied even without the pre
ise knowledge of the parameters values whi
h is a

unique feature.

The above advantages predispose the sample-based approa
h for the analysis of multistable systems with

large phase spa
e dimensions and multiple 
o-existing attra
tors. Future appli
ation perspe
tives in
lude

espe
ially analysis of large networks like power grids or simulations of brain dynami
s

The presented results are the �rst broad 
omparison between the path-following method, the basin

stability approa
h and the experimental investigation. We show that the sample-based methods are a

reliable tool for the analysis of 
omplex dynami
al systems. Moreover, we prove that the extended basin

stability method has signi�
ant advantages whi
h make it robust and appropriate for many appli
ations in

whi
h 
lassi
al analysis methods are di�
ult to apply.
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