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A B S T R A C T

In this paper we present a bifurcation analysis of two periodically forced Duffing oscillators coupled via soft
impact. The controlling parameters are the distance between the oscillators and the difference in the phase of the
harmonic excitation. In our previous paper http://arXiv:1602.04214 (P. Brzeski et al. Controlling multistability
in coupled systems with soft impacts [11]) we show that in the multistable system we are able to change the
number of stable attractors and reduce the number of co-existing solutions via transient impacts. Now we
perform a detailed path-following analysis to show the sequence of bifurcations which cause the destabilization
of solutions when we decrease the distance between the oscillating systems. Our analysis shows that all solutions
lose stability via grazing-induced bifurcations (period doubling, fold or torus bifurcations). The obtained results
provide a deeper understanding of the mechanism of reduction of the multistability and confirmed that by
adjusting the coupling parameters we are able to control the system dynamics.

1. Introduction

Systems interacting via impacts have attracted in recent years the
attention of a growing number of researchers. In many mechanical
systems, such as tooling machines, walking and hopping machines or
gears, the motion of some elements is limited by a barrier or the other
parts of a machine. In this paper we focus on mechanical interactions
produced via soft impacts [1]. Therefore we assume a finite, nonzero
contact time and a penetration of the colliding bodies. The contact
forces are modeled using a linear [2,3], Hertzian [4,5] or other non-
linear [6] spring and a viscous damper. To describe the behavior of such
systems we introduce separate sets of smooth ODEs governing the
system motion during the in-contact and out-of-contact stages.

Numerous investigations have been devoted to the analysis of
various dynamical phenomena induced by impacts. The characteristic
bifurcation for such systems is the grazing bifurcation, which can occur
both for non-impacting and impacting solutions [7–10]. The grazing
bifurcation occurs when the velocity of impact is zero and the trajectory
just touches the boundary of impact. Hence, when passing the grazing
point the change of a control parameter causes an appearance of a new
impact, which takes place with zero impact velocity (a grazing impact).
Grazing bifurcations may induce different events, such as sudden loss of
stability, emergence of a new orbit or multiple orbits, a change in the

period of the system's motion or creation of a chaotic attractor.
In this paper we carry out a bifurcation analysis of two non-linear

oscillators interacting via transient impacts. We consider system of two
identical oscillators and assume the interaction starts when the distance
between them is sufficiently small. When the systems are uncoupled we
observe multiple stable attractors for each subsystem, so the overall
system is also multistable. Therefore, in this system we are able to
change the number of stable attractors and reduce the multistability via
transient impacts. This phenomenon has been introduced in our
previous paper [11]. In this paper we investigate the mechanism that
lies behind this phenomenon and show the sequence of bifurcations
which cause the destabilization of solutions.

The paper is organized as follows. In Section 2 we introduce the
model of two Duffing oscillators coupled via soft impacts. The descrip-
tion of continuation procedure is presented in Section 3. Then, in
Section 4 we show the bifurcation analysis in one and two control
parameters. Finally, in Section 5 the conclusions are given.

2. Physical model of the coupled Duffing oscillators and equations
of motion

We investigate two coupled Duffing oscillators schematically pre-
sented in Fig. 1. The motion of the system is governed by the following
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equations:
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Mx k x k x cx F F ωt φ¨ + + + ˙ − = sin( + ),C2 1 2 2 2
3

2 (2)

where a single over dot means differentiation with respect to the
dimensional time. Here, FC stands for the contact force generated by the
discontinuous dissipative coupling, given by
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In the present study, we will consider the equations of motion
(1)–(2) in dimensionless form, according to the following formulas:
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where mℓ = 1[ ]r , m kg= 1 [ ]r and ω rad s= 1[ / ]r are the reference
length, mass and frequency respectively. In the rest of the paper, the
results will be presented considering the nondimensional variables
and parameters introduced above. Nevertheless, all tildes will be
omitted for the sake of simplicity. Similarly to our previous investiga-
tion [11] the controlling parameters will be the distance d between the
subsystems and the phase shift in the excitation force of the second
system φ.

3. The coupled Duffing oscillators as a piecewise-smooth
dynamical system

The governing equations (1)–(2) can be studied in the framework of
piecewise-smooth dynamical systems [12]. In this context, the state space
is typically divided into disjoint subregions, each defining a particular
operation mode of the system, where the system behavior is described
by a smooth vector field. The boundaries of the subregions are defined
by the zero-set of smooth scalar functions (known as event functions).
Event functions are usually connected to physical instantaneous events,
such as: impacts, switches, transitions from stick to slip motion, etc.
When a trajectory crosses the boundary of a subregion, the vector field
describing the system behavior is switched according to the governing
laws of the system. A boundary crossing can be accurately detected by
means of e.g. the standard MATLAB ODE solvers together with their
built-in event location functionality [13,14], as implemented in [15].

To study the dynamics of the coupled Duffing oscillators, we employ
path-following (continuation) method, which enables to systematically
explore a model response subject to parameter variations [16], with
focus on the detection of possible qualitative changes in the system
dynamics (bifurcations). Computational tools specialized on path-
following algorithms for piecewise-smooth dynamical systems have
been developed in the past, such as SlideCont [17], TC-HAT [18] (see
also [19–23] for some applications of this tool) and, more recently,
COCO [24,25]. In the present work, we will apply COCO to study the
non-linear behavior of the coupled Duffing oscillators. The next section
will explain in detail the mathematical setup required to use the

continuation software in order to carry out the numerical investigation.

3.1. Modeling of the coupled Duffing oscillators in COCO

In this paper we perform numerical investigation using path-
following toolbox COCO (abbreviated form of Computational
Continuation Core [24]). It is a MATLAB-based analysis and develop-
ment platform for the numerical solution of continuation problems. The
software provides the user with a set of toolboxes that covers, to a good
extent, the functionality of available continuation packages, e.g. AUTO
[26] and MATCONT [27]. A distinctive feature of COCO is, however,
that it offers a general-purpose framework for the user to develop
specialized toolboxes that can be constructed based on a number of
generic COCO-routines, common across a large range of continuation
problems.

In our investigation we will use the COCO-toolbox ‘hspo’, which
extends and improves the functionalities of the software package TC-
HAT [18], an AUTO-based application for continuation and bifurcation
detection of periodic orbits of piecewise-smooth dynamical systems.
The main differences between these two continuation toolboxes are
discussed in detail in [25]. The mathematical setup required to apply
the COCO-toolbox ‘hspo’ is the same as for TC-HAT. It requires to divide
a piecewise-smooth periodic trajectory into smooth segments. Each
segment is then characterized by a smooth vector field describing the
system behavior in the segment and an event function that defines the
terminal point of the segment, as explained at the beginning of Section
3. What follows,

 λ d φ ω F M k k c k c π≔( , , , , , , , , , ) ∈ × [0, 2 ) × ( )c c1 2 0
+ + 8 and u≔

x x v v( , , , ) ∈T
1 2 1 2

4 denotes the dimensionless parameters and state
variables of system (1)–(2), respectively, where 0

+ stands for the set
of nonnegative numbers. Below, we introduce the segments that are
used for the numerical implementation in COCO.

No Contact (NC). This segment occurs when the oscillating masses
move without touching each other, i.e. x x d( − <1 2 . In this segment the
contact force FC equals zero (see Fig. 1). The motion of the coupled
Duffing oscillators during this regime is governed by the system of
equations (cf. Eqs. (1)–(2))
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where the prime symbol denotes differentiation with respect to the
nondimensional time. This segment terminates when a transversal
crossing with the impact boundary defined by

h u λ x x d( , )≔ − − = 0IMP 1 2

is detected, and the system switches to the Contact segment introduced
below.

Contact (C). In this operation mode the oscillating masses are in
contact, i.e. x x d− ≥1 2 , which gives rise to an additional force due to
the discontinuous coupling defined by the spring-damper pair k c( , )c c .
The dynamics of the system in this operation mode is described by the
equations (cf. Eqs. (1)–(2))
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with the terminal point being defined by the event h u λ( , ) = 0IMP , after

Fig. 1. Model of two discontinuously coupled Duffing oscillators.
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which the contact between the two masses is lost and therefore the
system switches to the No Contact mode defined previously.

Grazing Segment (GS). This segment is introduced in order to detect
a grazing contact with the impact boundary h u λ( , ) = 0IMP during the
No Contact mode. The system behavior during this segment is described
by the ODE 4, and the end point of the segment is given by the
equation:

h u λ v v( , )≔ − = 0.GS 1 2

This condition defines a point where the relative velocity between the
oscillating masses becomes zero, which allows an accurate detection of
grazing bifurcations by monitoring the function hIMP evaluated at this
point. Once a grazing bifurcation has been detected, adding the
auxiliary boundary condition h u λ( , ) = 0IMP enable us to trace a curve
in two control parameters at which a grazing contact takes place (see
Section 4.3).

In Table 1 we show the segments introduced above with their
corresponding vector fields and event functions. In addition, each
segment is assigned with an index Ii, i = 1, 2, 3. In this setting, any
periodic solution of the system can be fully defined by a sequence of
segments I{ }

j
K

ℓ =1j , referred to as solution signature [18], with 1 ≤ ℓ ≤ 3j

and K ∈ . To conclude this section, we write below the governing
equations of the coupled Duffing oscillators in compact form, in terms
of the vector fields and event functions defined above

⎧⎨⎩u
f t u λ h u λ
f t u λ h u λ

′ =
( , , ), ( , ) < 0,

( , , ), ( , ) ≥ 0.
NC IMP

C IMP (6)

4. Numerical results

In this section we carry out a detailed bifurcation analysis of the
system via the continuation platform COCO, as explained in the
previous section. Particular attention is given to the sequence of
bifurcations which cause the destabilization of non-impacting solutions
in the vicinity of grazing bifurcations. In the diagrams we describe each
solution with the time of contact between the colliding oscillators. Such
approach allows us to identify all non-impacting solutions for which the
time of contact is zero.

4.1. Non-impacting dynamics of two Duffing oscillators

In Fig. 2 we show all non-impacting solutions of two coupled
Duffing oscillators 6, computed for the following parameters values:
ω = 1.3, d=12, φ = 5.28, F=1, M=1, k = 11 , k = 0.012 c=0.05, k = 20c
and c = 1c (those values are fixed in the whole paper). The distance d
and the phase shift φ are chosen in such a way that ensures no
interaction between the oscillators. We observe two possible solutions
for each isolated system. One with small and the second one with large
amplitude of oscillations. They correspond to non-resonant and reso-
nant periodic solutions, which typically co-exist close to the resonance
frequency of the Duffing oscillator. The solutions are named according
to the notation introduced in our previous article [11]: L R1

1
1
1, L R1

1
1
2,

L R1
2

1
1 and L R1

2
1
2. The left- and right-hand side systems are named Lpl

nl and
Rpl

nl respectively. The sub- and superscripts indicate the character of the
periodic solution. The number of the attractor is denoted by nl (in case
of multiple attractors of an isolated oscillator) and pl is the period of the
given attractor with respect to the period of excitation (we assume that
solutions are periodic). In our case nl is 1 (the small amplitude solution)

Table 1
Segments defined for the numerical analysis of system (6)using the COCO-toolbox ‘hspo’.

Index Segment Vector field Event function

I1 No Contact (NC) fNC hIMP

I2 Contact (C) fC hIMP

I3 Grazing Segment (GS) fNC hGS

Fig. 2. Possible non-impacting solutions of two non-interacting Duffing oscillators (6), computed for the following parameters values: ω = 1.3, d=12, φ = 5.28, F=1, M=1, k = 11 ,
k = 0.012 c=0.05, k = 20c and c = 1c .
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or 2 (the large amplitude solution), while pl is always 1 because both
solutions have the same period as the excitation. The detailed descrip-
tion of notations for the periodic solutions and possible solutions of
isolated Duffing oscillators are shown in [11]. In this paper we
investigate in details the evolution of possible solutions via continua-
tion methods.

4.2. One parameter bifurcation analysis

In Fig. 3 we show the result of the numerical continuation of the
non-impacting solution L R1

1
1
1 with respect to the distance d. Solid lines

represent the stable solutions while dashed lines the unstable solutions.
On the vertical axis we show the time of contact, which is the amount of
time in which the two masses are in contact with each other during one
period of the external excitation π

ω
2 . Starting from large value of d we

are on the red line that correspond to a non-impacting solution, with
signature I{ }3 . This means that the solution consists of the single
segment Grazing Segment defined in Section 3.1, which is used to detect
grazing bifurcations. As we reduce the distance d, we detect a grazing
bifurcation GR1 at d ≈ 1.4198, where the solution makes tangential
contact with the impact boundary h u λ x x d( , ) = − − = 0IMP 1 2 (see the
inner plot of Fig. 3(b)). At this point, a solid blue branch emerges,

corresponding to a stable impacting solution with signature I I{ , }1 2 . That
is, after the grazing bifurcation we have periodic solutions with two
segments, one corresponding to non-impacting motion and one corre-
sponding to impacting motion. If we decrease d further, we find a fold
bifurcation F1 at d ≈ 1.4197, which lies very close to the grazing point
GR1. At F1 the solution loses stability (marked by the dashed line in
Fig. 3(b)) and the blue branch turns in the increasing direction of d.
From this point d increases until a second fold bifurcation F2 is detected
at d ≈ 4.3481, where the periodic solution regains stability, and there-
fore the blue branch becomes solid. Hereafter, d decreases, until the
final point d=0 is reached, below which the solutions of the system are
physically meaningless. In Fig. 3(a), the paths D1-D2 show schemati-
cally a hysteresis loop of the system produced by the interplay between
the two fold bifurcations found during the continuation, which is a
typical mechanism by which a hysteretic behavior can appear, see e.g.
[28], Section 8.2.

The results of numerical continuation of the second non-impacting
solution L R1

1
1
2 with respect to the distance d are shown in Fig. 4 As in

the previous case, for large values of d the Duffing systems oscillate
without interacting with each other. If d is decreased, a grazing
bifurcation GR2 is detected at d ≈ 9.9437, after which impacting motion
begins. Very close to GR2, a torus bifurcation TR1 is encountered for

Fig. 3. (a) One-parameter continuation of the non-impacting solution L R1
1

1
1 shown in Fig. 2 with respect to the distance d. The red segment of the bifurcation diagram corresponds to non-

impacting while blue line depicts the impacting solution. The solid and dashed branches denote stable and unstable solutions, respectively. Bifurcation points are marked by black dots.
The paths D1-D2 show schematically a hysteresis loop of the system. (b) Enlargement of the boxed region shown in panel (a). The inner diagram presents a periodic solution of the system
at the grazing bifurcation GR1. Here, the vertical red line stands for the impact boundary h u λ x x d( , ) = − − = 0IMP 1 2 . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article).

Fig. 4. (a) One-parameter continuation of the non-impacting solution L R1
1

1
2 shown in Fig. 2 with respect to the distance d. The red and green segments of the bifurcation diagram

correspond to non-impacting stable and unstable solutions, respectively. The blue line indicates the impacting solution. The inner set shows the corresponding stable (solid line) and
unstable (dashed line) non-impacting solutions at the test point P1 (d=10.6). (b) Quasiperiodic solution of the system near the torus bifurcation TR2 (d ≈ 6.9965), computed at the test
point P2 (d=7.15). In this picture, the black and red colors mark the trajectory segments during non-impacting and impacting motion, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).
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d ≈ 9.9399. Here, a pair of complex conjugate Floquet multipliers of the
periodic solution crosses the unit circle from the inside, and therefore
stability is lost. If d is further decreased, another torus bifurcation TR2
at d ≈ 6.9965 is found, where the unstable pair of Floquet multipliers
enter again the unit circle, therefore the periodic solution becomes
stable. Below TR2 we find a small window of stability which finishes at
the fold bifurcation F3 encountered at d ≈ 6.8953. From this point, a
branch of unstable impacting solution goes to the increasing direction
of parameter d. As d is increased along this branch, the time of contact
decreases, until a grazing bifurcation GR3 is detected at d ≈ 7.7136. It is
important to note, however, that this is a grazing bifurcation of an
unstable solution, which otherwise would not be detected via direct
numerical integration. This allows us to trace a branch of unstable non-
impacting solutions, marked by the green dashed line. This shows that
in this case stable and unstable non-impacting solutions coexists in the
system, as depicted in the inner set of Fig. 4(a), corresponding to the
coexisting solutions at the test point P1 (d=10.6). In panel (b), we show
a quasiperiodic solution of system 6, computed at the test point P2
(d=7.15). This quasiperiodic solution is produced by the torus bifurca-
tion TR2 found before.

In Fig. 5 we show the result of the numerical continuation of the
non-impacting solution L R1

2
1
1 with respect to the distance d. For large

values of d there is no interaction between Duffing systems. If d is
decreased, a grazing bifurcation GR4 is detected at d ≈ 11.6562, after
which impacting motion begins. Very close to GR4, a torus bifurcation
TR3 is encountered at d ≈ 11.6514, where the solution loses stability. As
shown in the inner window in Fig. 5(a), as the distance d is further
decreased, a fold bifurcation F4 is detected at d ≈ 11.6361, after which a
total number of 3 Floquet multipliers lie outside the unit circle.
However, as we trace the unstable branch further, we find another
torus bifurcation TR4 for d ≈ 11.6734, where a pair of Floquet multi-
pliers enter the unit circle and leaves only one unstable multiplier. As
we increase d, a fold bifurcation F5 at d ≈ 12.4466 occurs, which in
principle may help the solution regain stability. However, a closer look
at the Floquet multipliers reveal that this is not the case, but at F5
another real multiplier crosses the unit circle from the inside, and
therefore the stability of the periodic solution does not change. The
solution branch now turns in the decreasing direction of d, and after a
large excursion another fold bifurcation F6 is detected at d ≈ 9.0212,
where one of the unstable real multipliers gets inside the unit circle,
leaving one unstable multiplier. After this, a grazing bifurcation GR5 is
found at d ≈ 9.0318, after which a branch of non-impacting unstable
solutions exists (shown in green color). In panel (b) of Fig. 5 we present
the solution manifold around the fold bifurcation F4, shown in the inner
set depicted in panel (a). Here, we can geometrically verify that F1

corresponds indeed to a turning point of the solution manifold. A
similar behavior can be observed around the fold bifurcations F5 and
F6.

The path-following with respect to distance d of the last periodic
solution L R1

2
1
2 is shown in Fig. 6 We also start calculations for large

distance d, and when d is decreased, a grazing bifurcation GR6 is
detected at d ≈ 9.2303. Below this value, we find a small parameter
window of stable impacting motion, which terminates at the period-
doubling bifurcation PD1 found at d ≈ 9.1709. From here on, the
periodic orbit becomes unstable. This unstable solution is traced further
via continuation in the decreasing direction of d, and a second period-
doubling bifurcation PD2 is encountered for d ≈ 0.1624, where the orbit
regains stability, and remains so until the terminal point d=0. As it is
well-known, a period-doubling bifurcation gives rise to a solution with
twice the period of the original orbit, and in this case we also
investigated such orbits. In Fig. 6(b) we show a stable period-2 orbit
(solid line) computed at the test point P3 (d=0.176), which lies close to
the period-doubling bifurcation PD2. The dashed curve represents the
corresponding unstable period-1 solution computed at the same test
point. By tracing the period-2 solution via COCO, several bifurcations
are detected. One of them corresponds to a grazing bifurcation GR7
detected at d ≈ 0.9887, where the period-2 orbit makes grazing contact
with the impact boundary h u λ x x d( , ) = − − = 0IMP 1 2 , as can be seen in
Fig. 6(c). If we trace this periodic solution further in the decreasing
direction of d, a period-doubling bifurcation of the period-2 orbit is
found at d ≈ 0.9645 (PD5), which gives rise to solutions of four times
the period of the original orbit. Such a (stable) period-4 orbit can be
found close to the period-doubling bifurcation, for instance at the test
point P4 (d=0.952), as depicted in Fig. 6(d). The sequence of
bifurcations encountered for the period-2 solution is as follows (see
Fig. 6(a)): fold d ≈ 0.4379 (F7), fold d ≈ 0.3563 (F8), period-doubling
d ≈ 0.3564 (PD4), period-doubling d ≈ 0.9645 (PD5), fold d ≈ 1.0530
(F9), grazing d ≈ 0.9887 (GR7), fold d ≈ 0.5130 (F10), period-doubling
d ≈ 0.5131 (PD6), period-doubling d ≈ 9.1482 (PD3).

In all of the considered cases we observe the stabilization of periodic
solutions with impacts. Nevertheless, all impacting solutions lose
stability in the grazing-induced bifurcations (torus, period doubling
or fold bifurcation). Therefore, it is possible to chose the values of
controlling parameters to avoid the co-existence of impacting and non-
impacting solutions.

4.3. Two-parameter analysis of the impacting motion

To further explain the evolution of the solution L R1
1

1
1 presented in

Fig. 3 we perform the two-parameter continuation of the codimension-1

Fig. 5. (a) One-parameter continuation of the non-impacting solution L R1
2

1
1 shown in Fig. 2 with respect to the distance d. (b) Solution manifold around the fold bifurcation F4

(d ≈ 11.6361). The red and blue colors denote the solutions computed for the corresponding colored branches in the enlarged region shown in panel (a). The turning point of the solution
manifold at F4 is plotted in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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bifurcations GR1 (blue curve), F1 (red curve) and F2 (green curve) with
respect to d and φ. The results are shown in Fig. 7. The red and blue
curves of fold and grazing bifurcations nearly overlap. Hence, to show
that there is a small distance between them we zoom them in the inner
panel of subplot (a). In this picture we can verify the small distance
between these two curves, which gives an indication that the fold
bifurcation is being induced by the grazing phenomenon occurring in
the system, which is a typical scenario for systems with soft impacts
(see e.g. [19,21,29], Example 2.3). At φ = 5.28 there is a dashed vertical
line which corresponds to the bifurcation scenario depicted in Fig. 3.
The closed curve D1−D2 shows schematically the hysteresis loop found
for φ = 5.28, produced by the presence of the fold bifurcations F1 and
F2. According to the two-parameter bifurcation diagram, small pertur-
bations in the phase shift will preserve the hysteresis loop. However, for
phase shifts below the critical point TP (φ ≈ 5.1051), which corresponds
to a turning point of the fold curve, the hysteresis loop disappears. This
is verified in Fig. 7(b), where the continuation of the non-impacting
solution L R1

1
1
1 is shown for φ = π3

2 . Here, only one fold bifurcation is
detected (F11, d ≈ 2.0887), corresponding to the intersection of the
vertical line φ = π3

2 and the red fold curve shown in Fig. 7(a). Due to the
symmetry in the system we observe the mirror reflection of this fold
bifurcation curve on the left side of Fig. 7(a).

Now, let us describe in details the phenomena that occur due to the

existence of the green branch. It corresponds to the two-parameter
continuation of the fold point F2 found in Fig. 3. This fold curve,
however, has itself a turning point (TP) which divides the branch into
two parts that are dynamically separated. The continuation shown in
Fig. 3 only shows one fold bifurcation found in the lower branch of the
green fold curve. This separation is basically due to the hysteresis loop
D1-D2 shown in Figs 3 and 7. For large values of d (gap), the masses
move separately. If d decreases, at some point the solution hits the
grazing curve (blue), shown in Fig. 7. If d decreases a little bit further,
then the solution encounters the fold curve (red) and therefore the
solution branch turns back. After this, d starts increasing, but with
Duffing oscillators contacting each other. If d increases further, at some
point the solution branch hits the green fold curve, which again makes
the solution branch turn back, and from this point d decreases again.
This is why we do not see a fold bifurcation on the upper part of the
green curve (above the TP point) during the one-parameter continua-
tion shown in Fig. 3.

In Fig. 8 we show the result of the two-parameter continuation of
the grazing bifurcations GR1 (red curve), GR2 (green curve), GR4 (blue
curve) and GR6 (black curve) found in our previous numerical
investigations (see Figs.(3)–(6)). Here, we did not consider the grazing
bifurcations GR3 and GR5 because those correspond to unstable
solutions that in this case have no relevant influence in the system

Fig. 6. (a) One-parameter continuation of the non-impacting solution L R1
2

1
2 shown in Fig. 2 with respect to the distance d. The green segment stands for the continuation of a period-2

solution (see panel (b)) originating from the period-doubling bifurcation PD2 (d ≈ 0.1624). (b) Period-1 (dashed line, unstable) and period-2 (solid line, stable) solutions computed at the
test point P3 (d=0.176) shown in panel (a), close to the period-doubling bifurcation PD2. (c) Period-2 orbit making grazing contact with the impact boundary
h u λ x x d( , ) = − − = 0IMP 1 2 (red line), detected at GR7 (d ≈ 0.9887). (d) Period-4 solution computed at the test point P4 (d=0.952), which originates from the period-doubling
bifurcation PD5 (d ≈ 0.9645) shown in panel (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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dynamics. Additionally we neglect the small region of existence of
stable impacting solution shown in previous figure (within green lines).
The two-parameter continuation is shown in Fig. 8(a), carried out in the
φ-d plane. Each curve divides the control plane in two regions: one
where the corresponding L Rm n

1 1 orbit is non-impacting and one where
L Rm n

1 1 bifurcates to a narrow region of stable impacting motion. A
transition from non-impacting (NC) to impacting behavior (C) is
marked by an arrow in the picture. In Fig. 8(b) we show the solution
manifold computed along the two-parameter continuation of the
grazing bifurcation GR6 (black curve). The red surface represents the
behavior of the impact boundary h u λ x x d φ( , ) = − − ( ) = 0IMP 1 2 , with
φ d φ( , ( )) on the black grazing curve. In the picture, we can geome-
trically verify that the solution manifold makes tangential contact with
the impact boundary, for every point along the grazing curve.

5. Conclusions

In this paper we present a path-following bifurcation analysis of the
system that consists of two identical Duffing oscillators interacting via
soft impacts. In our previous paper [11] we show that by changing the
distance d and the phase shift φ of excitation we can control the

dynamics of the system and ensure that both Duffing oscillators perform
the desired type of non-impacting motion. Now, we extend the analysis
to demonstrate the bifurcation scenarios which lie beneath the detected
phenomena. Impacting systems, due to non-smoothness, cannot be
analysed using classical path-following toolboxes, so we obtained all
the stable and unstable branches using the continuation platform COCO
[24].

When the subsystems are at large distance d there is no interaction
between them. In such case there are four possible states of the overall
system. We investigate the evolution and the bifurcation scenarios that
lead to destabilization of these states. We show that for all considered
non-impacting solutions a grazing bifurcation occurs with the decrease
of the distance d. In this point the non-impacting solution disappears
and a stable impacting solution emerges. However, when the distance d
is further slightly decreased the impacting solution loses its stability in a
grazing-induced bifurcation, i.e., period doubling, torus and fold
bifurcation. In the case of the solution L R1

1
1
1 when further following

the impacting solution we observe its stabilization after the second fold
bifurcation. Nevertheless, we show that such scenario is peculiar and
impacting solutions are stable only in the narrow range of the
controlling parameters. In view of these results, we confirm that by

Fig. 8. (a) Two-parameter continuation of the grazing bifurcations GR1, GR2, GR4 and GR6 (see Figs.(3)–(6)) with respect to d and φ, corresponding to the non-impacting solutions L R1
1

1
1,

L R1
1

1
2, L R1

2
1
1 and L R1

2
1
2, respectively. The arrows indicate the transition from non-impacting (NC) to impacting (C) motion. (b) Solution manifold computed along the grazing curve for

L R1
2

1
2. Here, the red surface stands for the impact boundary h u λ x x d φ( , ) = − − ( ) = 0IMP 1 2 , with φ d φ( , ( )) on the grazing curve. The tangential contact between the solution manifold and

the impact boundary is marked by a black curve on the surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Two-parameter continuation of the codimension-1 bifurcations GR1 (blue curve), F1 (red curve) and F2 (green curve) found in Fig. 3 with respect to d and φ. The label TP
stands for a turning point of the green fold curve. The closed curve D1-D2 shows schematically the hysteresis loop found in Fig. 3, produced by the presence of the fold bifurcations F1 and
F2 for φ = 5.28. (b) One-parameter continuation of the non-impacting solution L R1

1
1
1 shown in Fig. 2 with respect to the distance d, for φ = π3

2
. In this case, the hysteresis loop D1-D2

disappears. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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adjusting the coupling parameters we are able to control the system.
All the impacting solutions are stable in a narrow range of the

parameter space, with a remarkably different system evolution. Hence,
there is no universal scenario for all the considered states. The common
part is the occurrence of a grazing bifurcation followed by an
immediate second grazing-induced bifurcation which destroys the
stability of the impacting solution. Our results prove that the destabi-
lization of impacting solutions via soft impacts is robust and that it
always occurs via grazing-induced bifurcations.
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