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In this paper we propose the novel type of tuned mass damper and investigate its
properties. Characteristic feature of the device is that it contains a special type of inerter
equipped with a continuously variable transmission and gear-ratio control system which
enables stepless and accurate changes of inertance. We examine the damping properties

forced oscillator. To prove the potential of introduced device we test its four different
embodiments characterized by four different sets of parameters. We generalize our
investigation and show that proposed device has broad spectrum of applications, we
consider three different stiffness characteristics of damped structure i.e. linear, softening
and hardening. We use the frequency response curves to present how considered devices
influence the dynamics of analyzed systems and demonstrate their capabilities. Moreover,
we check how small perturbations introduced to the system by parametric and additive
noise influence system's dynamics. Numerical results show excellent level of vibration
reduction in an extremely wide range of forcing frequencies.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Effective damping of unwanted oscillations of mechanical and structural systems has always been a big challenge for
engineers. One of the first attempts to absorb energy of vibrations and in consequence reduce the amplitude of motion is a
tuned mass damper (TMD) introduced by Frahm [1]. The device consists of mass on linear spring such that its natural
frequency is identical with the natural frequency of damped system. As it is well known, the classic TMD is extremely
effective in reducing response of the main structure in principal resonance but for other frequencies (even close to resonant
frequency) it increases the amplitude of the system's motion. Modification of the TMD can be found in the work of Den
Hartog [2], where author proposes the addition of the viscous damper to Frahm's system design. Thanks to the presence of
damper the TMD can be a powerful device that can reduce vibrations of the main body in wide range of excitation
frequencies around principal resonance. Another modification that can lead to broaden the range of TMD's effectiveness was
proposed by Roberson [3] and Arnold [4] who interchange linear spring of TMD by the nonlinear one (with the linear and
nonlinear parts of stiffness). In recent years much more attention is also paid to the possibility of using purely nonlinear
spring [5–7]. Authors show that system with such spring has no main resonant frequency, hence the TMD works in wide
range of excitation frequencies. One can find many successful applications of TMDs which are used to prevent damage of
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buildings due to seismic excitation [8,9], suppress vibrations of bridges [10,11], achieve the best properties of cutting
processes [12,13], decrease vibrations of floors or balconies [14,15], reach stable rotations of rotors [16–18], stabilize drill
strings [19] and many others.

In this paper, we propose new design of tuned mass damper based on a special type of an inerter. Inerter – introduced in
early 2000s by Smith [20] – is a two terminal element which has the property that the force generated at its ends is
proportional to the relative acceleration of its terminals . Its constant of proportionality is called inertance and is measured
in kilograms. The first studies of this device were devoted to the possible application as an element of cars' suspensions [20].
It has been shown that oscillations induced by road imperfections and load disturbances can be reduced more effectively
using suspensions with inerters. Then, in 2004 Smith and Wang [21] studied several simple passive suspension struts, each
containing at most one damper and inerter. The theoretical results are confirmed with experiment showing that suspension
layouts with inerter are more effective than classical designs with dampers and springs only. Wang and Su [22] present how
the performance of suspension is influenced by the nonlinearities which appear due to inerters' construction including
friction, backlash and the elastic effect. They show that the performance benefits are slightly degraded by the inerter
nonlinearities but still the overall performance of suspension with a nonlinear inerter is better than traditional ones,
especially when the stiffness of suspension is large. In 2005 the inerter was profitably used as a part of suspension in
Formula 1 racing car under the name of J-damper [23].

One can also find a series of works about suspensions of railway vehicles employing inerters by Wang et al. [24,25] and
by Smith and co-authors [26–28]. As a new type of mechanical element inerter became the subject of growing scientific
interest. Its successful application in car suspension resulted in a number of studies on other possible application areas.
Recently [29] Takewaki et al. examined if the advantages of inerters can be beneficial in devices protecting buildings from
earthquakes. The authors present detailed study showing how allocation of damping device with inerter on each storey
(from first to twelfth storey) influence the response of the building. In [30] authors study the influence of an inerter on the
natural frequencies of vibration systems. They propose different constructional solutions of one and two degree-of-freedom
systems and present how inerters influence their dynamics. In a recent papers [31,32] authors propose the usage of an
inerter as a part of TMDs and prove that the addition the device could potentially improve damping properties. Numerical
results presented in aforementioned paper prove that optimally designed TMD with inerter outperforms classical TMDs.
Still, to work efficiently, all considered devices have to be precisely tuned which can be hard to achieve or even impossible in
some cases. Moreover proposed TMDs with inerters suffer from susceptibility to detuning.

The above problems may be eliminated using the device equipped with an inerter that enables stepless and accurate
changes of inertance. Such a property can be achieved by the usage of a continuously variable transmission (CVT) with gear-
ratio control system. In this paper we describe how aforementioned special type of an inerter can be constructed and
successfully implemented in TMD to ease its tuning process, enable simple and effortless re-tuning and increase its range of
effectiveness.

This paper is organized as follows: Section 2 contains the description of proposed TMD design and its model. In Section 3
we analyze damping of one-degree-of-freedom structure. The first subsection is devoted to description of considered model.
In the second subsection we present the results of numerical simulations of structures with linear, softening and hardening
stiffness characteristic. We analyze four embodiments of presented TMD and show how these devices affect the dynamics of
the system. Moreover, we try to characterize and compare their damping performances. Section 4 includes the description
of the control which let us tune the natural frequency of the TMD to the frequency of external excitation. In Section 5 we
check the robustness of the obtained solutions. We analyze the response of the system in the presence of additive and
parametric noise. We summarize our results in Section 6.
2. Design of the tuned mass damper

2.1. Description of the novel TMD construction

Before we present the analysis of damping properties of TMD with an inerter which allows changes of inertance we
describe in detail possible design of such a device. In our patent application [33] we propose the TMD construction layout
that is presented in Fig. 1. The body of the device (1) is constructed as a combination of the two parallel namely plate ð1�p1Þ
and ð1�p2Þ – positioned vertically and integrated with two smaller parallel ð1�p3Þ and ð1�p4Þ positioned horizontally.
Lower horizontal plate ð1�p3Þ is used to mount the device on a structure that vibrations we want to mitigate in a way that
the axis of the device is parallel to the direction of damped vibrations. The upper horizontal plate ð1�p4Þ has a handle that
is used to mount helical spring (2). The other end of the spring (2) is anchored to another horizontally oriented plate (3).
This plate (3) is connected to gear rack (4) guided in two sliding supports (5) that are mounted in vertical body plates.
Thanks to that, massive plate (3) together with gear rack (4) can move in direction of the axis of the device and function as a
moving element of TMD. Gear rack (4) cooperates with pinion (toothed gear) (6) that is affixed on the drive shaft (7) of
continuously variable transmission (8) (in presented construction we assume the usage of belt-driven CVT, but other types
are also permissible). Flywheel (9) that accumulates energy is mounted on the driven shaft (10) of the CVT. Bearings (11) of
both transmission shafts are mounted in vertical body plates.



A

A

A - A

B

BB - B

1

2

11
7

6
5

10
8

4

3

9

1-  3p
1-  2p
1-  1p

1-   4p

Fig. 1. Assembly drawing of the proposed TMD construction layout.
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The device is firmly fixed to the structure which movement we want to mitigate. Hence, the only element that can perform
the movement with respect to the damped structure is the massive plate (3) together with the gear rack (4). Both these
elements are combined and mounted on the helical spring (2). Reciprocating motion of moving elements (3,4) is transferred
through rack and pinion and CVT into rotational motion of the flywheel (9). Therefore, for fixed CVT ratio the device works
similarly to classical TMD equipped with the inerter. Novelty of the proposed device lies in the fact that ratio between linear
velocity of moving mass (3,4) and rotational speed of the flywheel can be changed by manipulating CVT ratio.

2.2. Model of the proposed device

Technical design presented in Fig. 1 and described in previous section can be modeled by a simple system schematically
presented in Fig. 2. The model of the device consists of inertial component (A) that is coupled via elastic link (B), inerter (C),
and dash-pot (D) to support (E) that allows fixing the device to the damped structure. Inertial element (A) can move in
vertical direction and imitates massive plate (3) together with the gear rack (4). The mass of element (A) corresponds to the
total combined mass of parts (3) and (4) and is described by parameter m. Elastic link (B) corresponds to helical spring (2)
and parameter k is used to characterize its stiffness. Support (E) is the collective model of the device body and described by
parameter MTMD. Value of parameter MTMD is equal to the total mass of the elements that cannot perform the movement
with respect to a damped structure, namely parts (1, 2, 5, 6, 7, 8, 9, 10, 11). The inerter (C) is described by parameter I equal to
inertance currently introduced to the system. In order to better imitate real device characteristics we add a dash-pot (D)
which models damping that is always present in the system due to internal damping, friction and motion resistance
introduced by the presence of CVT [36,37]. Dash-pot (D) is described by viscous damping coefficient cT.

Parameters m, k, MTMD, cT are constant and cannot be changed during operation of the device while value of parameter I
can be modified as it depends on the current transmission ratio. CVT ensures that parameter I can be changed smoothly in a
given range, that is defined by the range of achievable CVT ratios. Model presented in Fig. 2, although very simple and
described by only 5 parameters, is fully capable of describing the dynamical behavior of the device presented in Fig. 1.

2.3. Characteristics of the considered TMD

The classical TMD introduced by Frahm [1] consists of mass on a linear spring. Such a device is extremely effective in
suppressing oscillations of the main structure when its vibrations frequency is close to the natural frequency of TMD. For
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Fig. 2. Scheme of the proposed TMD model.
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frequencies outside small range it increases the amplitude of the system's motion. Because of this disadvantage, the classical
TMD has extremely small range of effectiveness, hence it is hardly ever used. Modifications of TMD design such as addition
of a viscous damper, usage of nonlinear spring instead of linear one lead to extension of the range of effective damping but
also impairs damping properties in principal resonance (when vibrations frequency is equal to the natural frequency of
TMD). Therefore, one always has to decide what the priority is: the most effective mitigation of vibrations for given
frequency or achieving the tolerable damping properties in a wide range of vibration frequencies. This problem can be
minimized by novel types of TMDs which incorporates inerters or magnetorheological dampers that are intensively
developed nowadays. Unfortunately, all of the devices are not as efficient as classical TMD for its tuned frequency. Moreover,
the more complicated the design of the device, the more difficult to tune it precisely. The other problem, which is rarely
addressed, is susceptibility to detuning which often strongly impairs the chances of application.

The solution for the problems would be the TMD with as small damping as permissible (to secure best possible damping
efficiency for natural frequency of the device) and controllable natural frequency. The TMD of the design proposed in this
paper (see Fig. 1) meets both of these requirements. There are no dampers in its construction and thanks to its unique
design one can easily and steplessly change the natural vibrations frequency of the device. The formula that describes the
natural frequency of the considered TMD is the following:

ωTMD m; k; cT ; Ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mþ I
� c2T
4ðmþ IÞ2

s
(1)

Natural frequency of the considered TMD does not depend on parameter MTMD which only describes the increase of
damped structure mass caused by installation of the TMD. As it was described in Section 2.2 parameter I is controllable (it
describes inertance that depends on current CVT ratio) while values of other influencing parameters m, k and cT are
constant. Therefore, since the device does not contain any additional damping sources, we assume that c2T=4ðmþ IÞ2 � 0 and
consider the natural frequency of the device as a function of inertance value only:

ωTMD Ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k

mþ I

s
(2)

Thanks to the presence of CVT which enables stepless changes of inertance ωTMDðIÞ that can be smoothly adjusted to
achieve best damping properties for given frequency of vibrations during tuning or re-tuning process. Possibility of
effortless re-tuning is a great advantage because in many cases during the design of TMD for given structure we cannot
determine exact values of its most important parameters.

Although in this paper we consider passive vibration control, damping performance and applicability of the proposed
TMD can be enhanced through the use of semi-active or active control system. Control system should be responsible for
measuring current frequency of vibrations which want to mitigate and adjust inertance value to achieve maximum
reduction of damped structure amplitude. Proposed TMD equipped with proper control system would be particularly
effective in relation to the structures that are forced with varying frequencies. Currently we are optimizing control algorithm
for prototype device and in our next paper we are going to describe the performance the prototype of proposed TMD
supplied with active control system. Nevertheless, preliminary simulations let us think that proposed TMD will provide
excellent performance and a wide range of effectiveness, potentially offering improvement over other known TMDs.

It is important to mention that most of the benefits of the novel TMD we owe the use of CVT. If it would be replaced with
standard transmission there will be a finite number of accessible inertances resulting in a finite number of achievable natural
frequencies of TMD. Therefore, in most cases wewould not be able to tune the device precisely. Moreover, it would be much harder
to implement control systemwhich would increase capabilities of the device. Natural frequency of the TMD could also be affected
by changes of the spring stiffness. Such changes can be realized (also in a stepless manner) by changing geometrical measures of
the spring or its material properties (for example by usage of shape memory alloys [34,35]). Nevertheless such a device would be
much harder to control and would have smaller range of accessible natural frequencies.
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3. Damping of one-degree-of-freedom structure

In this section we examine damping properties of the proposed novel TMD. As the model of the structure which motion
we want to mitigate we use one-degree-of-freedom periodically forced oscillator with viscous damping. To have a general
overview of system's dynamics we assume three different damped structure stiffness characteristics, i.e., linear, hardening
and softening. To emphasize capabilities of the proposed TMD we choose four different sets of parameters and for each of
them check the damping performance of the device.

3.1. Model of the considered system

The analyzed system is shown in Fig. 3. It consists of two oscillators that can move in vertical direction. The first oscillator
is connected with the support and forced by harmonic excitation. It is used as a model of the structure which vibrations
should be mitigated and will be called base oscillator. The second oscillator is connected to the first one and represents the
TMD of the design described in the previous section.

The motion of the system is described by two generalized coordinates: the vertical position of the base oscillator by
coordinate x, while the vertical displacement of the TMD by coordinate y. The notation of parameters used to characterize
the base oscillator is as follows: M is the mass of the oscillator, k1 and k2 are the linear and nonlinear parts of the base
oscillator spring stiffness and its viscous damping coefficient is given by parameter c. For simplicity, parameter M describes
total mass of the base oscillator hence, it should be calculated as a sum of two masses. The first is the mass of the structure
which vibrations we want to mitigate and the second refers to the mass of the TMD body given by parameter MTMD. To
describe the TMD itself we use the following parameters: m is the mass, k describes spring stiffness, cT is a viscous damping
coefficient and I represents the inertance of the inerter.

Using Lagrange equations of the second type one can obtain equations of motion:

M €xþk1xþk2x3þc _xþ Ið €x� €yÞþkðx�yÞþcT ð _x� _yÞ ¼ F cos ðω0tÞ; (3)

m €y� Ið €x� €yÞ�kðx�yÞ�cT ð _x� _yÞ ¼ 0; (4)

where F cos ðω0tÞ is a harmonically varying excitation with the force amplitude F and the frequency ω0.
Introducing dimensionless time τ¼ tω (ω¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=M

p
is the linear approximation of the natural frequency of the base

oscillator) and the reference length l0 ¼ 1:0 m one can rewrite equations in dimensionless form:

€x 0 þx0 þk2Dx03þcD _x
0 þ IDð €x 0 � €y 0ÞþkDðx0 �y0ÞþcTDð _x 0 � _y0Þ ¼ FD cos ðω0τÞ (5)

mD €y
0 � IDð €x 0 � €y 0Þ�kDðx0 �y0Þ�cTDð _x 0 � _y 0Þ ¼ 0 (6)

where x0 ¼ x=l0, _x
0 ¼ _x=l0ω, €x 0 ¼ €x=l0ω2, y0 ¼ y=l0, _y

0 ¼ _y=l0ω, €y 0 ¼ €y=l0ω2, k2D ¼ k2l
2
0=Mω2, cD ¼ c=Mω, ID ¼ I=M, kD ¼ kl20=Mω2,

cTD ¼ cT=Mω, mD ¼m=M, FD ¼ F=Ml0ω2, ω0 ¼ω0=ω. This way of transformation to dimensionless parameters allows to hold
accessibility to physical parameters. We also introduce the dimensionless natural frequency of the TMD defined as
ω0

TMD ¼ωTMD=ω. For simplicity primes in dimensionless equations will henceforth be neglected.
The model of the system could be realized by the simple experimental rig. In numerical calculations we use parameters'

values that correspond to possible realization of the rig: M¼ 100 kg, k1 ¼ 24 � 103 N m (which corresponds to a pair of 6924
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Fig. 3. Model of the system and notation of system's parameters.
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Lesjofors AB compression springs in accordance with standard EN 10270-1 SH); c¼ 124 N s=mwhich is equal to 4 percent of
critical damping – we assume that small damping is present due to internal resistances. Amplitude of forcing is equal to
F ¼ 192 N (that can be generated using three-phase induction motor such as Tamel 4Sg90L-6-IE2 with imbalanced rotor).
We perform analysis for three different values of parameter k2: k2 ¼ 0 N=m3, k2 ¼ �720 � 103 N=m3 and k2 ¼ 1440 �
103 N=m3 which corresponds to linear, softening and hardening characteristic of the spring respectively. Parameter values
after transformation to dimensionless form (depicted by letter D) are as follows: cD ¼ 0:08, FD ¼ 0:008 and three considered
values of k2D: k2D ¼ 0, k2D ¼ �30 and k2D ¼ 60. Parameters m, k, cT that describe the TMD are changed during numerical
simulations similar to the inertance I that is our controlling parameter.

3.2. Numerical results

In order to show damping properties of the proposed TMD design we analyze the response of the base oscillator.
Additionally, to emphasize the versatility of introduced TMD layout we consider four representative devices characterized
by given sets of parameters (with different masses, spring stiffnesses, damping coefficients and ranges of reachable
inertances). For each considered set of parameters we examine the damping efficiency of the device with respect to the base
structure with linear, softening and hardening spring stiffness characteristic. In Table 1 we present parameters and ranges of
accessible dimensionless natural frequencies ω0

TMD of four analyzed TMD embodiments along with types of lines by which
they are marked in plots.

For the first two embodiments we assume that mass of TMD moving element is equal to 10 percent of base oscillator's
mass (m¼ 10 kg), while for third and fourth analyzed TMD it is increased to 20 percent (m¼ 20 kg). For each case spring
stiffness and accessible range of inertance are chosen so that the range of accessible dimensionless natural frequencies of
the device is ωTMDA 〈0:5;

ffiffiffi
2

p
〉 (dimensionless resonant frequency of the base oscillator, in linear approximation, is equal

to 1.0)
First set of parameters (No. I) contains the following values: m¼ 10 kg, k¼ 9:6 � 103 N=m, cT ¼ 30:98 N s=m (which

corresponds to 5 percent of critical damping) and inertance I in the range from I ¼ 10 kg to I ¼ 150 kg. After transformation
to dimensionless values we get mD ¼ 0:1, kD ¼ 0:4, cTD ¼ 0:02 and IDA 〈0:1;1:5〉. In the second case (No. II) we consider the
TMD with decreased damping coefficient to 1 percent of critical damping (see Table 1). In the third (No. III) and fourth (No.
IV) case the mass of TMD is increased twice m¼ 20 kg and the stiffness is increased by 50 percent k¼ 14:4 � 103 N=m. The
damping coefficients are chosen so that their values correspond to 5 percent and 1 percent of critical damping for No. III and
No. IV respectively. The ranges of accessible inertance are adjusted to ensure assumed range of accessible natural
frequencies of the device (details in Table 1). The four sets of parameter values presented in Table 1 were chosen
specifically to enable the description of how mass of the device and viscous damping coefficient influence the dynamics of
the considered system.

We assume that damping properties should be preserved in a wide range of excitation frequencies. The best measurable
indicator of amplitude decrease is comparison of frequency response curves (FRC) of base oscillator without and with TMD.
For that reason for each considered set of TMD parameters we pick 200 equally spaced values of ID from the accessible range
of inertance and for each of them calculate the FRC using continuation method (AUTO-07p package [38]). Next, we
superimpose received curves and find minimum amplitudes of the base oscillator for ωAð0:5;

ffiffiffi
2

p
Þ. As a result we obtain the

curve that can be used to evaluate damping effectiveness of the proposed TMD.

3.2.1. Structure with linear stiffness characteristic
In this subsection we analyze the mitigation of vibrations of the system with linear stiffness characteristic (k2D ¼ 0).

Results obtained by the path-following method are presented in Fig. 4. Dashed lines in Fig. 4(a) and (b) demonstrate the
response of the base oscillator without TMD. In Fig. 4(a) we show changes of the base oscillator response when No. II set of
parameters of TMD is used. In Fig. 4(a) gray lines correspond to FRCs of base oscillator with the TMD for equally spaced
values of inertance ID from the accessible range IDA 〈0:1;1:5〉 (we plot every tenth from 200 FRCs not to blur the figure).
Analyzing the shape of the FRCs one can say that parameter ID significantly influences the response of the structure and
determines the position of the minimum along FRC. Therefore, to fully present benefits from the changeable inertance we
plot the black solid line that is created as a connection of points where we observe minimum values of the base oscillator
Table 1
Sets of parameters that characterize four considered TMD embodiments and line types used to demonstrate their attributes. CD stands for critical damping.

No. Parameters Dimensionless parameters Line type

cT (N s/m) m (kg) k (N/m) I (kg) cTD mD kD ID ωTMD

I 30.98 10 9600 〈10;150〉 0.02 (5% of CD) 0.1 0.4 〈0:1;1:5〉 〈0:5;
ffiffiffi
2

p
〉

II 6.197 10 9600 〈10;150〉 0.004 (1% of CD) 0.1 0.4 〈0:1;1:5〉 〈0:5;
ffiffiffi
2

p
〉

III 53.66 20 14400 〈10;220〉 0.03464 (5% of CD) 0.2 0.6 〈0:1;2:2〉 〈0:5;
ffiffiffi
2

p
〉

IV 10.73 20 14 400 〈10;220〉 0.006928 (1% of CD) 0.2 0.6 〈0:1;2:2〉 〈0:5;
ffiffiffi
2

p
〉
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amplitude. It is clearly visible that in the considered range of the excitation frequencies the amplitude of the base oscillator
decreased significantly.

Procedure described above was performed also for Nos. I, III and IV of TMD parameters' sets. Results of the computations
are presented in Fig. 4(b). Comparing the shapes of FRCs obtained for four considered TMDs realizations one can say that
changes of mass and damping coefficient of TMD strongly affect its damping properties. Analysis of Fig. 4(b) leads to
conclusion that the bigger the mass of the device (m) and the smaller the damping coefficient (cT) the better damping
efficiency can be achieved. The difference between the FRC obtained for considered devices is especially visible for
ωAð0:5;1:1Þ. Still, we see that all considered embodiments of the TMD significantly decrease the base oscillator amplitude
for all excitation frequencies and the reduction of the amplitude is more noticeable, the larger the ω.

In practical applications it is often a priority to minimize the mass of the TMD. Then, we have to assure possibly small
damping coefficient to preserve good damping in a wide range of excitation frequencies. But, in real devices there is always
some internal sources of damping that cannot be eliminated. Hence, we cannot decrease damping below some threshold
that is determined by the construction of the device. Therefore TMD's parameters should be optimized specifically for the
purpose and according to specified preferences.

3.2.2. Structure with softening stiffness characteristic
In this part we examine the efficiency of the proposed novel TMD with respect to structures with softening stiffness

characteristic. Therefore, we introduce the nonlinearity into the model of the base oscillator by changing the value of
nonlinear part of its spring stiffness to k2D ¼ �30. Because of the nonlinearity we observe changes in the stability along the
FRC which occur in two saddle-node bifurcations for ω¼0.8984 and ω¼0.8178. Between the bifurcations two stable
solutions coexist. As it is well known the range of coexistence results in an unwanted rapid jumps in amplitude (both, for
increase or decrease of excitation frequency).

Results for the system with softening spring are presented in Fig. 5. Dashed lines in Fig. 5(a) and (b) demonstrate the
response of the base oscillator without TMD. In Fig. 5(a) effects of application of No. II TMD are shown. Gray lines in Fig. 5(a)
are the base oscillator FRCs calculated for 21 equally distributed values of ID parameter (from 200 calculated) in its accessible
range IDA 〈0:1;1:5〉. Black solid line shown in Fig. 5(a) is created by connecting the minimum points along aforementioned
200 FRCs. Hence, the black solid line can be treated as the FRC for the system with No. II embodiment of TMD with
controllable CVT. By the proper choice of inertance of the TMD we are able to stabilize the response of the base oscillator in
the whole range and no bifurcations are observed.

In Fig. 5(b) we present damping performance of all four analyzed embodiments of TMD. The shape of the lines is almost
identical as for linear case (see Fig. 4(b)) because thanks to the presence of TMD amplitudes of base structure for allω values
are too small to observe the effects induced by nonlinearity of the spring. Similarly, the conclusions that can be formulated
after comparison of investigated exemplars are the same as those expressed in Section 3.2.1.

3.2.3. Structure with hardening stiffness characteristic
For complementary of presented analysis, after studying the behavior of systems with linear and softening stiffness, in

this subsection we consider base oscillator with hardening rigidity described by k2D ¼ 60. Dashed lines in Fig. 6(a,b)
correspond to the FRC of the base oscillator without TMD. Two saddle-node bifurcations can be observed along the FRC for
ω¼1.159 and ω¼1.116. Similar to the previous subsections in subplot (a) of Fig. 6 we present in detail the performance of
the second TMD embodiment (No. I) and in subplot (b) of Fig. 6 compare properties of all four TMD exemplars considered in
this paper.
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In Fig. 6(a) 21 gray lines correspond to FRCs calculated for uniformly distributed values of ID parameter (out of 200
computed) from its accessible range ID〈0:1;1:5〉. Black solid line shown in Fig. 6(a) was formed by merging minimums of 200
FRCs calculated for equally spaced values of ID. Four lines presented in Fig. 6(b) are created in the same procedure and
correspond to four examined TMD embodiments. These lines present the decrease of the base oscillator amplitude that can
be achieved thanks to the presence of the CVT in the TMDs constructions. All considered TMDs reduce the amplitude of base
oscillator effectively enough to make its nonlinear stiffness characteristic barely visible. Therefore, FRCs calculated for the
system with hardening stiffness characteristic and TMDs are almost identical to the ones obtained for models with linear
and softening rigidity (see Fig. 4(b) and Fig. 5(b)).

4. Control algorithm

In this section we present a simple control algorithm which let us calculate the inertance ID of the TMD for given
frequency of exaction. Doubtlessly, such control is required in the experimental realization to follow changeable frequency
of system's excitation. Let us first rewrite the formula (2) in dimensionless form:

ωTMD IDð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kD
mDþ ID

s
; (7)

it describes the natural frequency of the TMD.
In classical constructions of the TMD, its natural frequency should be tuned to the natural frequency of the damped

system. In our model, thanks to changeable inertance, we are able to tune the TMD's natural frequency to the frequency of
external excitation ω. In Eq. (7) we substitute in place of ωTMDðIDÞ the frequency of external excitation ω. Hence, we can
derive the expression which let us calculate the value of inertance ID for given value of ω:

ID ¼ kD
ω2�mD: (8)
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Based on formula (8) we recompute the FRCs of damped systems. In Fig. 7 we show the response of the damped system
for linear (Fig. 7(a)), softening (Fig. 7(b)) and hardening (Fig. 7(c)) characteristic of the base system's spring. We select two
out of four sets of the TMD's parameters: upper (TMD I) and lower (TMD IV) curves. The black lines indicate the FRCs copied
from Figs. 4 to 6, while the gray lines correspond to FRCs obtained with control. As it is easy to see, the discrepancy between
curves is small, that confirms that the simplest form of control is sufficient. The addition of the damping influence to control
(according to Eq. (1)) does not increase the efficiency of control, because precise value of the damping coefficient is usually
hard to measure (here, damping includes internal damping, friction and motion resistance introduced by the presence of
CVT). Hence, the computed value of inertance ID is also slightly miscalculated.

Note that the results are nearly identical for three types of the base system. This similarity is caused by small amplitudes
of the systems with TMDs (the stiffness nonlinearity does not play a significant role).
5. Dynamics of the system under the presence of noise

In real system, we cannot avoid the influence of internal and external noise. We can distinguish two main types of noise
[39]. A parametric noise is always present in any real mechanical device or part (inaccuracy in measuring of system's
parameters) and the second type, widely used to verify the robustness of solutions, is an additive noise. We simulate both
cases assuming that noise signal ζ is composed of statistically independent random numbers chosen at each time τ from the
uniform distribution with a zero mean 〈ζ〉¼ 0:0 in the interval ½�1:0;1:0�. Parameters σa and σp control the strength of the
noise signal for additive and parametric case respectively.

In our model we introduce the parametric noise to the damping coefficient of the TMD (cT þζσp). Parameter cT includes
internal damping, friction and motion resistance introduced by the presence of CVT, hence we can expect a discrepancy in
its value. The additive noise (ζσa) is added to the equation of inerter (Eq. (6)). For each type of noise we calculate the FRCs
based on the control algorithm introduced in the previous section.

We investigate the influence of noise only for the system with softening spring characteristic because there is no
qualitative difference between the FRCs for all three types of the base oscillator (see previous section). The results for
parametric noise are presented in Fig. 8(a). We take the following values of the noise strength: σp ¼ 0:1cTD and σp ¼ 0:5cTD,
the first one corresponds to cTD ¼ 0:0870:008 and the second one to cTD ¼ 0:0870:04 (notice that the damping is still
relatively small). We calculate the responses for two out of four sets of TMD's parameters: upper curves (TMD I) and lower
lines (TMD IV). The black lines correspond to the system without noise (σp ¼ 0:0), the dark gray dots to σp ¼ 0:1cTD (dots
overlap with the black line) and light gray dots to σp ¼ 0:5cTD. For σp ¼ 0:5cTD the maximum amplitudes of the damped
system are slightly lower, this suggests that by proper tuning of damping coefficient value we can still decrease the
maximum amplitudes of the base system.

More significant discrepancy between the response of the system without and with noise is observed for additive noise
(Fig. 8(b)). Similarly in this case we introduce three values of noise strength σp ¼ 0:0 (no noise, black lines), σp ¼ 0:001 (dark
gray dots) and σp ¼ 0:01 (light gray dots). One can see that the influence of the noise with strength σp ¼ 0:001 is small (dots
overlap with the black lines), however for σp ¼ 0:01 the maximum amplitudes of the damped system are spread in the
wider range.

Incontrovertibly, this analysis shows that the TMD decreases the base system's response even in the presence of external
noise and presented device can work in real (experimental) systems.
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6. Conclusions

In this paper we present and analyze properties of novel TMD design that is characterized by the presence of an inerter
with controlled CVT that enables stepless changes of inertance. This allows smooth changes of natural vibrations frequency
of the TMD. Therefore, by proper tuning of CVT gear-ratio one can adjust TMD's natural frequency of vibrations to the
current frequency of excitation. Thanks to this feature TMD introduced in this paper is extremely easy to tune even without
knowing the precise values of damper structure parameters. Moreover it offers an extraordinary ability to be re-tuned by
changes of inertance.

To show damping performance of presented TMD design we examine its efficiency with respect to one-degree-of-
freedom harmonically forced oscillator. For generalization, we consider the base oscillator with three different stiffness
characteristics: linear, softening and hardening. To prove the versatility of the device we check damping performance of its
four embodiments characterized by different sets of parameters. For all considered sets of TMD's parameters one can
observe a significant decrease of amplitude of motion in wide range of excitation frequencies. In each case all analyzed TMD
realizations reduce the amplitude of base structure so efficiently that effects of nonlinear stiffness characteristics are barely
visible and FRCs calculated for systems with different rigidity are almost identical. Note that their FRCs without TMDs are
completely different.

Comparing the performance of four analyzed exemplars one can say that changes of mass and damping coefficient of
TMD strongly affect its damping properties. The difference in systems response is especially visible for ωAð0:5;1:1Þ. Despite
the stiffness characteristic of the damped structure we can say that the bigger the mass of the device (m) and the smaller the
damping coefficient (cT), the better damping efficiency can be achieved. Presented results prove that all four considered
embodiments of the TMD significantly decrease the base oscillator amplitude for all excitation frequencies. Complete
analysis of how parameters that are used to describe proposed design of TMD influence its properties requires much more
calculations and will be the subject of our upcoming paper.

Numerical results presented in this paper prove that introduced construction of TMD provides remarkable damping
properties in a notably wide range of vibration frequencies along with easy tuning and re-tuning ability. We introduce the
control that enables to adjust inertance's value depending on the measured frequency of vibrations. Still, capabilities of the
proposed TMD can be enhanced through the use of more advanced control. The damping properties are also preserved
when noise is present in the system. This allows to claim that presented results are robust as they exist in the wide range of
system's parameters in the presence of noise.

Proposed device would be particularly effective in relation to the structures that are forced with varying frequencies. In
our next paper we will present control algorithm for the presented novel TMD and validate results of numerical simulations
by experimental investigation of the prototype.
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